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Abstract

This research investigates prognostics modeling methods on repeated measurement data

of multiple units in order to improve the prediction accuracy and facilitate effective pre-

dictive maintenance. Engineering systems deteriorate in performance over time and are

subject to the stresses in operation. Maintenance is carried out to assure satisfactory levels

of reliability during the life of systems. Predictive maintenance (PdM) is one of the most

effective maintenance policies, where maintenance actions are planned based on the ac-

tual system performance. Remaining useful life (RUL) prediction is the keystone of PdM.

Prognostics and health management (PHM) is involved in PdM due to its strength in the

system’s RUL prediction and related health management. Prognostics is the core process of

PdM and PHM, that aims to predict the RUL based on the available performance data. Mul-

tiple uncertainties, such as input uncertainties and model uncertainties, undermine the pre-

diction performance of prognostics models. To characterize the inherent variability in the

degradation process, repeated measurement design is exercised, where repeated measure-

ment data of multiple units is obtained. This type of data is used to detect multiple-source

variability and requires advanced modeling techniques due to its complex structures. This

research aims to develop adequate prognostics models to quantify multiple-source vari-

ability in this type of data and develop robust algorithms for complex data structure with

unbalanced/missing data.

Based on the way of modeling the multiple-source variability, four prediction methods

are proposed to model the prognostics process based on repeated measurement data of mul-

tiple units. General mixed-effect models (GMM), containing fixed and random effects, are

widely used to account multiple sources of variability in repeated measures. The combi-

nation of fixed and random effects illustrates the variability in a stochastic process. Fixed

effects describe the characteristics of the population average over units and the random ef-

fects demonstrate the variation of units. Because of the difficulty of GMM dealing with
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unbalanced data, a joint modeling method (JMM) is proposed where the degradation pro-

cesses of each unit is interpreted as multivariate normal distributions. The concept of joint

modeling is that the mean and covariance are decomposed firstly and then unknown pa-

rameters of the mean function and covariance matrix are estimated jointly. In the proposed

method, mean, variance, and correlation of measurements are firstly decomposed based on

Cholesky decomposition. Trigonometric functions are used to parameterize the correlation

matrix. A penalized maximum likelihood estimation is proposed for parameter estimation

in JMM. The expensive computation in GMM and JMM due to the high dimension covari-

ance matrix necessitates the dimension reduction techniques. For this purpose, functional

principal component analysis (FPCA) is deployed in this research. Functional data refers

to data where each observation is modeled as a curve, a surface, or a hypersurface. FPCA

applies the concept of functional data analysis in principal component analysis to reduce

computation complexity. Finally a general spatio-temporal model is proposed based on

the aforementioned methods, where spatial, temporal trends and their dependency will be

quantified. Spatial trends can be analogized as the difference between units, while temporal

trends illustrate the degradation process.

To reduce the model error, physical understanding is incorporated into the models. Co-

variate selection for all the proposed methods is done based on physics-based model. With

the degradation model, the distribution of time to failure (TTF) can be estimated through

simple numerical simulations. This research aims to apply and validate the proposed meth-

ods in battery capacity degradation to provide accurate prediction on cycle to failure and

elucidate the mechanism of capacity fade.

Keywords: prognostics, degradation modeling, remaining useful life, time to failure, pre-

diction, repeated measurement data, multiple units, multiple-source variability
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1. INTRODUCTION

This chapter presents the statement of problem with motivation, background of the overall

area, research goals, and proposed research tasks.

1.1 Statement of problem

Engineering systems deteriorate in performance over time and are subject to the stresses

in operation. Therefore, maintenance should be implemented to assure the satisfactory level

of reliability during the life of systems. Predictive maintenance (PdM) can minimize life

cycle cost and effectively avoid catastrophic failures. Prognostics and health management

(PHM) is involved in PdM and is highly desired due to its strength in performance pre-

diction and health management. For both PdM and PHM, prognostics is the key process,

which implements the remaining useful life (RUL) prediction. Uncertainties in prognos-

tics, such as input uncertainties and model uncertainties affect the prediction performance

of prognostics models. Repeated measurement studies aim to characterize the input un-

certainties, i.e., statistical variability, and also bring challenges for prognostics modelers.

Firstly, for repeated measurements of multiple units, multiple sources of variability exists.

Secondly, complex repeated measurement data requires more robust algorithms. Thirdly,

expensive computation is involved due to large volumes variety of repeated measurement

data. This research aims to develop adequate prognostics methodologies to tackle these

challenges.

1.1.1 Prognostics and Health Management

Predictive maintenance (PdM) has been popular in industries due to its advantages in

minimizing life cycle cost. It estimates the future degradation/damage state and then take

maintenance actions before a failure occurs. Figure 1.1 illustrates the comparison of the

1



traditional maintenance and predictive maintenance. Predictive maintenance is an extended

condition-based maintenance policy with a predictive capability in the degradation process

[1]. Performance data monitoring is continuously required in preventive maintenance so

that dynamic maintenance can be scheduled. The advantages of predictive maintenance

can be seen through the increase of system/component availability, extension of operational

life, the reduced process downtime, and the improved the personnel and environment safety.

The implementation of predictive maintenance includes the deployment of hardware and

software that monitor, detect, and predict system performance and the major interest is to

estimate the remaining useful life of degrading equipment.

Reactive 
Maintenance

Preventive 
Maintenance

Predictive 
Maintenance

Cost savings, effective maintenance scheduling, etc.

Im
pl

em
en

ta
tio

n,
 c

os
t o

f c
om

pl
ex

ity
, e

tc
. 

Run it till breaks

Pre-scheduled 
maintenance

Maintenance based 
on actual condition

Figure 1.1: Comparison of traditional maintenance policies and predictive maintenance

The concept of Prognostics and Health Management (PHM) was first mentioned by

Department of Defense in the Joint Strike Fighter Program [2] and has been highly de-

sired in predictive maintenance since then. It is considered as the key factor to definitely

promote a qualitative jump toward intelligent maintenance [3]. PHM is an emerging disci-

pline which integrates the failure mechanism analysis and life cycle management [4]. Its

major objectives are real-time health assessment, future degradation prediction, and deci-

sion management. PHM involves various fields including sensing technologies, physics of

failure (PoF), data science, reliability engineering, and management science. Figure 1.2
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presents the architecture of PHM cycle [5]. The implementation can be outlined as five

steps: data acquisition, data processing, feature extraction, diagnostics, prognostics, and

decision management. These steps are linked as a continuous improvement cycle. The

first step is data acquisition, where the performance measurement data is collected from

sensors. The second step is data processing, where the data cleaning, noise filtering, and

feature extraction are done. The third step is prognostics where the future degradation is

predicted based on the available data. This step is the core process of the whole PHM

cycle. Techniques in data science and knowledge of failure mechanisms are incorporated

to predict future state. Diagnosis is considered as the paralleled third step, where the fault

detection and identification are implemented. Physical understandings of the degradation

process are attained. The last step is decision management where the optimal maintenance

scheduling and logistics support are determined. PHM are separated into prognostics and

System of 
interest

Processing

Feature 
Extraction

Diagnostics

Prognostics

Decision 
Management

Sensor data

e.g. Noise filtering
Time to frequency 
transformation

Signal statistics
e.g., mean, variance, 
skewness, etc

Degradation modeling
RUL prediction

Maintenance plan
Reconfiguration

Degradation mechanism 
Failure modes

Figure 1.2: Schematic of PHM

health management [6, 7]. Prognostics is considered as the key process that provides cur-

rent and predicts the future performance for the decisions related to maintenance planning

and life management. This research aims to develop adequate prognostics methods using

3



observed repeated measurements and physical understandings of the degradation process,

which is emphasized in Figure 1.2.

1.1.2 Prognostics

The term “prognostic” is defined in Merriam-Webster dictionary as something that

foretells. In prognostics and health management, prognostics is a process to predict fu-

ture degradation and the remaining useful life (RUL) of the system based on the available

degradation data. There are several definitions of interest for prognostics.

• Prognostics is the process of estimating the remaining life of the component [8].

• Prognostics is an estimation of time to failure (TTF) and risk for one or more existing

and future failure mode [9].

• Prognostics is the process of predicting the future reliability of a product of assessing

the extent of deviation or degradation of the product from its expected norm operating

conditions. It is the prediction of the future state of health based on current and

historical health conditions [10].

• Prognostics is to predict future damage/degradation and the remaining useful life of

in-service systems based on the measurement damage data [11].

• Prognostics addresses the use of automated methods to detect, diagnose, and analyze

the degradation of physical system performance, calculating the remaining life in

acceptable operating state before failure or unacceptable degradation of performance

occurs [12].

Across all these definitions, performance/measurement data and RUL prediction are

the most frequently mentioned terms. Based on the above information, prognostics can be

defined as the process to model the degradation process and predict RUL based on the avail-

able data. Figure 1.3 presents the schematic of prognostics, where prognostics approaches

are expected to provide accurate RUL prediction, to be robust, and comprehensive.

4



Degradation 
data

Prognostics 
algorithm

RUL 
prediction

Figure 1.3: A generic procedure of prognostics

1.2 Motivation

Multiple sources of uncertainties, such as input uncertainties and model uncertainties,

exist in prognostics. These uncertainties deteriorate the accuracy of RUL prediction. Given

the availability of the complex repeated measurement data of multiple units, these uncer-

tainties incur more challenges in prognostics. This research focuses on developing robust

prognostics methods to tackle these challenges associated with these uncertainties.

1.2.1 Uncertainties in prognostics

A degradation process involves multiple sources of uncertainties which can all cause the

inaccurate prediction of RUL. From the perspective of statistical uncertainty, the degrada-

tion process varies from unit to unit that are manufactured under the same process and con-

dition. In a certain operation environment, there would be different degradation trajectories

among units. For example, lithium ion batteries tested under the same profile and environ-

ment would form different capacity degradation processes. Meanwhile, uncertainties from

the operating condition and environmental condition, such as future loads and circumstance

changes, exist in the degradation modeling. Modern prognostics approaches aim to effec-

tively quantify these aforementioned uncertainties so that an accurate RUL prediction can

be obtained. Advanced techniques such as machine learning algorithms and artificial net-

work, are used to model the degradation process. However, model errors still exist, which

might be caused by misspecified models, missing failure modes, and unmodeled phenom-

ena. It can be considered as biased understandings of the degradation process of interest.

Comprehensive prognostics models intend to incorporate physical understandings of the

degradation process so that model errors can be reduced. For example, the incorporation of

5



gas-path models in the degradation modeling of turbine engines has been investigated [13].

However, physical understandings of the degradation mechanism are usually limited and

incomplete for complex systems. Therefore, uncertainties from model errors can be rarely

eliminated even though with improved methods and investigations. Recently, uncertainties

caused by measurement devices attract attentions since the measurement data is taken as

the input of prognostics algorithm. Biased measurement/performance data might lead to

total invalid prognostics. As a result, sensor failure, noises, sensor architecture, and signal

fusion have been frequently investigated.

These uncertainties can be classified into four categories [5, 14, 15].

• Input uncertainties are related to inherent variability for any process, such as initial

state estimation, material property, geometric characteristics, manufacturing variabil-

ity, etc. These types of uncertainties are “born” with the degradation process and can

not be eliminated. Design of multiple experiment runs, such as repeated measure-

ment design, is the most commonly used method to characterize these uncertainties.

• Model uncertainties are related to model errors, such as misspecified methods, unex-

plained features, unmodeled phenomenons, etc. Advanced methods including data

science and testing techniques have been developed to reduce these types of uncer-

tainties. With the development of advanced sensing technique, large volumes of

measurement data are available. The “big data” challenge might cause more model

uncertainties.

• Operational uncertainties are related to during operation and involving environmental

conditions. These types of uncertainties are similar with model uncertainties, both

of which stem from the limited understanding of the degradation process. Deeper

investigation, especially under various operating and environmental conditions, can

reduce these uncertainties.

• Measurement uncertainties are related to uncertainties in measurement data, such as

sensor noise, filter error, etc. Improved sensing techniques and advanced methods in

data collection and processing can reduced this type of uncertainties.
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Adequate prognostics methods are expected to handle all of these uncertainties. Specif-

ically, prognostics models should have 1) capability in representing variety and veracity in

data, 2) comprehensive physical basis so that model uncertainties can be highly reduced,

and 3) robustness and computational effectiveness. This research is dedicated to develop-

ing comprehensive and robust prognostics methods that can sufficiently support decision

management in PHM.

1.2.2 Repeated measurement data of multiple units

Repeated measurement data of multiple units is the type of data collected in a process

where multiple responses of each experimental unit in multiple conditions and occasions

and multiple units are observed [16, 17]. This type of data was firstly investigated in the

medical and health care field. Repeated measurements studies are motivated by the desire

of quantifying statistical uncertainties in a process. Repeated measurement data of multiple

units can be used to detect within-unit and between unit over the measurement factor. The

advantages of the repeated measurements studies over cross-sectional studies are displayed

through 1) higher statistical power, 2) fewer required subjects, 3) various experimental

conditions being tested, 4) variability within and between units being separated, and 5) the

possibility of investigating individual change [18]. With the development of sensing and

computation techniques, repeated measurement data of multiple units are also available in

PHM. For example, NASA published several data repositories over the degradation exper-

iments of algae raceway, milling, bearing, and lithium ion battery, where all degradation

data are shown in the form of repeated measurements of multiple units [19–22]. By run-

ning multiple experiments, repeated measurement data can provide great insights of input

uncertainties mentioned in the last section. In the meantime, more challenges for prognos-

tics are also emerging and advanced modeling techniques are required. Figure 1.4 shows

the prognostics for repeated measurement data of multiple units. Challenges in prognostics

modeling with repeated measurement data of multiple units can be summarized as follows.
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• HOW to quantify multiple sources of variability. Between-and-within unit variabil-

ity describes the variability of a particular value for individual unit and that across

units. Between-units variability stems from the difference over units, and within-unit

variability is from the uncertainties of individual trajectory.

• HOW to deal with complex input data structure. The uncontrollable conditions, such

as failed sensor and external hazard, result in unbalanced or missing data.

• HOW to solve computational issue in the high dimension repeated measurement

data. Repeated measurement data often involves high volume and verity. Reducing

dimension becomes one of important parts of prognostics modeling with this type of

data.

• HOW to incorporate physical understanding. Multiple degradation trajectories com-

plicates the incorporation of the physical understanding. For example, space state

function in Kalman filter can not illustrate the dynamic degradation process of mul-

tiple units.
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Repeated measurement data of multiple units: 
• multiple responses of each experimental unit in multiple 
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Prognostics algorithm
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Figure 1.4: Repeated measurement data in prognostics

To tackle these above challenges, adequate models are proposed in this research to obtain

the accurate prediction on remaining useful life and explicate the degradation mechanism of
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interest. This research aims to develop adequate and robust methodologies that can tackle

the challenges: 1) multiple sources of variability, 2) complex input data structure, 3) com-

putational issue, and 4) difficulties to incorporate physical understandings into degradation

modeling. Three research objectives are proposed:

1. to quantify multiple sources of variability,

2. to devise prognostics model for complex data structure, e.g., unbalanced data sets

with missing data,

3. to explore general spatio-temporal model for repeated measurement data.

1.2.3 Significance of this research

This research aims to investigate prognostics modeling using repeated measurement

data of multiple units. By achieving the three aforementioned research objectives, this

research can 1) benefit the interpretation and quantification of inherent uncertainties of

the degradation process and aid design improvement through examining and comparing

individual across the time; 2) enhance the adaptability of prognostics models in complex

data structures especially unbalanced data and improve the understanding of variations and

correlation of degradation process via modeling both the mean and covariance as functions

of time-varying factors; 3) extend the repeated measurement design analysis to complex

system prognostics in reach of the spatio-temporal model.

1.3 Organization of the thesis

The remainder of this dissertation is organized as follows. Chapter 2 presents the lit-

erature review and research gaps. More specifically, the existing prognostics approaches

and application in repeated measurement data are summarized. Chapter 3 proposes a gen-

eral mixed-effect regression model to quantify between-unit uncertainties in prognostics

given repeated measurement data of multiple units by random effects. To improve the

prediction accuracy and enhance model interpretation, covariates selection is based on the
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physical understanding of the degradation process. Chapter 4 introduces the joint mod-

eling method-based prognostics, where the degradation process is considered as a Gaus-

sian process. The mean and covariance matrix of the degradation process are decomposed

and modeled as functions of time-varying factors. The covariance matrix is parameterized

through trigonometric functions. Penalized maximum likelihood estimation (PMLE) is

employed to estimate parameters in the mean and covariance matrix, where measurements

of each object are considered to be independent so that the scenario of unbalanced data

can be well handled. Chapter 5 presents two other prognostics modeling methods to tar-

get the challenges of intensive computation caused by high dimension and spatial-temporal

uncertainties. Applications of proposed prognostics approaches in battery capacity prog-

nostics is used for the purpose of model validation. Moreover, performance evaluation of

the above proposed methods is discussed. Chapter 6 concludes prognostics methodologies

in repeated measurements studies and discusses the future work.
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2. BACKGROUND

This chapter reviews fundamental work upon prognostics modeling. Studies on prognostics

have been growing fast due to its significance. A vast of amount of research has been done

on the review of prognostics approaches and their applications, such as [12, 23–30]. These

prognostics approaches are often classified into three categories, i.e., data-driven, physics-

based, and hybrid approaches, based on the usage of physical knowledge of the degradation

mechanism (see Figure 2.1). This chapter extends the discussion to prognostics approaches

for repeated measurements studies and identifies the research gaps.

Prognostics Approaches

Data-Driven Physics-Based Hybrid

Artificial 
Intelligence

Statistical 
methods

Physics of 
Failure

System 
Modeling

ANN

Fuzzy Logic
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based

Hidden 
Markov 
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Bayesian 
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Proportional 
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based Model 

Data-driven 
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Extended 
Kalman
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Particle 
Filters

Extended 
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Swarm 
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Integration

Figure 2.1: Summary of prognostics approaches

2.1 Data-driven prognostics

2.1.1 Overview

Data driven approaches are used to identify the characteristics of the current damage

state and to predict the future damage using available historical data (observed data) when
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rare physical understandings are available. The specialty of data-driven approaches is to

derive models directly from the available data. Gouriveau et al. [1] took the analogy of a

black box to describe data-driven prognostics. Data-driven approaches rely on the statisti-

cal characteristics [31]. Therefore, identification of these characteristics is the key process

to develop data-driven methods. There are two major advantages of these methods with

the firt one being low cost. These models can simply quantify the relationship the time and

degradation states without or with rare knowledge of the system and so they come with a

low implementation cost [32]. The development of computation techniques facilitates the

implementation of data-driven methods. The other advantage is improved performance.

With powerful machine learning techniques such as learning algorithms, data-driven ap-

proaches can largely reduce the model errors. Sometimes these models can broaden the

cognition of a complex degradation process. However, it is clear that there are some dis-

advantages as well. These models are hard to interpret due to lacking system knowledge.

Without physical understandings, it is difficult to illustrate model parameters. Sufficient

data is the most important ingredient and lacks of training data holds back the implementa-

tion of these methods. Along with large amount of data, computational issues could exist.

At last, data-driven methods are data-specified and so the obtained model could not be

reused in another data.

There are two major types of data-driven approaches. Pecht, Eker, and Javed [10,30,33]

divided data-driven approaches into machine learning and statistical models. Jardine et al.,

Dragomir et al., Peng et al., Elatter, and Schwabacher et al. [12, 23, 24, 29, 34] classified

data-driven prognostics into artificial intelligence and statistical techniques. Data-driven

approaches aim to automatically model the degradation behavior using historical data.

On the other hand, machine learning is considered as a sub-field of artificial intelligence

(AI) which uses historical data to automatically learn a model of the degradation process.

Therefore, it is more reasonable to categorize data-driven approaches into AI and statistical

techniques. Categories are not strictly separated and integrated methods are continuously

emerging.
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As listed in Table 2.1, artificial intelligence prognostics approaches include artificial

neural network, fuzzy logic, decision trees, Bayesian network, and learning vector quantifi-

cation. Statistical approaches include Gaussian process regression, least square regression,

maximum likelihood estimation, statistical filters, hidden Markov model, mixed effects re-

gression, and multivariate statistics. Merits and limitations of these data-driven approaches

are also summarized (see Table 2.1).

Table 2.1: Summary of data-driven approaches

Methods Merits limitations

Artificial Neural Network (ANN) powerful approximation capability non-transparent

[35–39]

Fuzzy logic good at condition classification missing the prediction

[7, 40–43]

Decision tree transparent unstable and complex

[44–46]

Bayesian network ready for sparse data and causality relationship expensive computation

[47–51]

Learning vectors ready for high dimensional data instability and non-transparent

[52–54]

Statistical methods

Gaussian process good at multivariate analysis strong assumption

[31, 55, 56]

Mixed effects modeling multiple sources of variability computation

[57–59]

Stochastic filters transparent expensive computation

[27, 60]

Artificial neural network (ANN) is the most popular approach and it is widely applied

in prognostics. ANN is a powerful method to model complex degradation processes and

modern statistical packages have developed mature ANN function which broaden its ap-

plication. However, ANN has its own drawback which is lacks of transparency. It is very

challenging to intuitively explain the outputs [12, 34]. Computation issue is raised when

the size of the network grows. The philosophy of fuzzy logic can effectively explain the

13



conditional uncertainties, but the lack of prediction of time to failure limits its applica-

tion [25, 61]. Learning algorithms, such as decision tree and learning vector quantification

share merits and limitations, transparent but unstable [54]. For statistical methods, com-

putation issue is the common limitation. Because statistical methods aim to quantify the

variability in data, their implementation is not as easy as AI approaches.

2.1.2 Data-driven prognostics with repeated measurement data

Data-driven prognostics can be easily used to analyze repeated measurement data. The

existing prognostics methods that analyze repeated measurement data are mainly Gaussian

process [55, 62] and mixed effects regression [58, 59, 63]. Multiple sources of variability

quantification is one of the objectives of these methods. For the Gaussian process, covari-

ance matrix modeling is used to explain the individual variability and stochastic behaviors

of parameters to illustrate the between-unit variability. Expensive computation limited its

application in the large volumes of repeated data. Mixed-effect/random-coefficient regres-

sion, usually used in longitudinal data analysis, is a very adequate tool to analyze repeated

measurement data. The fixed effect quantify the temporal variability and the random ef-

fects describes the difference between individuals. The implementation of mixed effects

regression is usually met with computation challenges due to the stochastic behavior of

its parameters. Both of these methods involve Bayesian inference through which model

parameters are estimated. Statistical methods can provide effective models based on the

performance data, but the parameter interpretation is still a challenge. Moreover, model-

ing complex repeated measurement data with unbalanced or missing data requires robust

algorithms.
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2.2 Physics-based approaches

2.2.1 Overview

Physics-based or model based prognostics is to incorporate the physics of failure and

to quantify characteristics of the degradation process under various loads and operation

conditions. These approaches can be categorized as physics of failure (PoF) approach

and system modeling approaches. Generally PoF models are system/component specific,

such as crack-growth model, rotation machine model, wearing model, gas-path model,

and electrochemical model. To obtain these physics of failure models, several steps of

failure modes, mechanisms and effects analysis (FMMEA), feature extraction, and RUL

estimation are needed (see Figure 2.2). This approach is effective and descriptive due to

incorporating physical understandings of the degradation process. System modeling ap-

proaches assume the system can be described by a model that can illustrate the stochastic

behavior of the system over degradation. For example, state space model can transform a

physical system into a set of input, output, and state variable related to the first-order differ-

ential equations. One of the advantages of the physics-based prognostics is to successfully

incorporate physical understanding of the system. This eases the interpretation of param-

eters in prognostics models. More importantly, with physical understanding, model errors

caused by unexplained features or un-modeled phenomena can be significantly reduced.

Therefore, physics-based prognostics can be used to improve the accuracy of prognostics

modeling. The limitation of physics-based approaches mainly lies in its high implementa-

tion cost. physics-based models are considered as the most expensive approaches among

prognostics approaches [32]. To obtain high fidelity physical model, sufficient experiments

are required. Intensive computation might cause model fail. Physics-based model are usu-

ally system specific and then the reusability is limited. Table 2.2 summarizes the most

commonly used physics-based approaches.

The benefit of physics-based model is the ability to incorporate physical understanding

of the system and improve the accuracy of prognostics modeling. Physical laws, such as

crack growth, fatigue, and wearing, can provide a “long-term” prediction under various
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Figure 2.2: A procedure of physics-based prognostics (adapted from [10])

Table 2.2: Summary of physics-based approaches

Models Application

Physics of Failure

Paris’s law crack [64–67]

Bearing [68, 69]

Fatigue [70, 71]

Stiffness-based rule [65, 72]

Electronic [22, 73]

System Modeling

Statistical filter [74]

loads. Statistical filters used to estimate the state space are considered as an integrated

method that combines physics-based and data-driven prognostics. Physics-based models,
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such Paris’ law, are usually deterministic functions, which are limited in analyzing vari-

ability of the degradation process.

2.2.2 Physics-based prognostics with repeated measurement data

Repeated measurement data on multiple units illustrates multiple degradation trajec-

tories. The characteristic of system/component specific limits the application of physics-

based model in repeated measurements studies. However, the physical understanding from

physics-based models can be used to improve the interpretation and accuracy in repeated

measurements studies. The incorporation of system knowledge in multiple degradation

trajectories is a challenging task, since there might be multiple measurements at the same

measurement factor, i.e., measurement time.

2.3 Hybrid approaches

2.3.1 Overview

Hybrid approaches is the integration of both data-driven and physics-based prognos-

tics. It is an intuitive idea to leverage the strength of both aforementioned data-driven and

physics-based prognostics to improve the prediction performance. Hybrid approaches, in

one side, can broaden the usage of physics-based models and also improve the interpre-

tation of data-driven models. Figure 2.3, adapted from [32], illustrates the the applica-

tion range and the prediction accuracy of data-driven and physics-based models. Hybrid

models “inherit” the wide application range from data-driven approaches and high fidelity

from physics-based approaches. Extensive work of hybrid approaches has been done. For

the implementation procedure, Kumar et al. [75] and Cheng et al. [76] proposed 9 steps

for fusing prognostics method and emphasized the importance of understanding physics of

failure (see Figure 2.5). Based on the major objective of diagnostics, Sankavaram et al. [77]

designed a six-step integrated diagnostic and prognostic process to implement the hybrid

approaches. These framework can be used for any system but not the only way. Five key
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steps required for a hybrid method include data acquisition, feature extraction, diagnostics,

degradation modeling, and RUL prediction. Diagnostics is to identify failure modes and

degradation mechanism, which can be used to provide the physical understanding for prog-

nostics modeling. Based on methods of degradation modeling and RUL prediction, Liao et

al. [78] classifies the hybrid approaches into four categories:

• use a data-driven model to infer a prognostics model and use a physics-based model

to predict RUL, such as [76, 79, 80],

• use a data-driven model to replace the system model of physics-based model, such

as [81],

• use a data-driven model to prediction future degradation state and use physics-based

for RUL prediction, such as [82],

• use both data-driven and physics-based model for RUL prediction and fuse their

results, such as [83–85].

The first three categories can be understood as data-driven or physics-based model serve

as priori for each other, i.e., these two methods work in series. The forth category is to

launch data-driven and physics-based models simultaneously and fuse their results, i.e.,

two integrated methods work in parallel.

2.3.2 Hybrid prognostics with repeated measurement data

Hybrid models are widely used for prognostics due to their strength inheriting from

both data-driven and physics-based models. However, existing hybrid methods used in

repeated measurement data, mainly regarding the development of data-driven techniques

and physical understanding are rarely incorporated. This research aims to develop adequate

hybrid prognostics models. To maintain the model accuracy for the purpose of prediction,

the incorporation of the physical understanding in this research is done through covariate

identification and functional forms selection for the models.
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2.4 Summary of prognostics approaches

Prognostics with repeated measurement data on multiple units confront challenges from

the multiple sources of variability, complex data structure, and expensive computation. As

mentioned in Table 1, data-driven techniques, such as mixed effects model, can be used to

quantify multiple sources of variability. As well, techniques from data science are desired

to reduce risks of uncertainties from the input data. Physics-based model can improve the
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prediction performance and keep the prognostics parsimony. For prognostics with repeated

measurement data, hybrid methods are desired to combine the strengths of these two types

of approaches. However, prognostics models for repeated measurement data are not well

investigated. Specifically, few work is proposed to

1. quantify multiple sources of variability

2. model for complex repeated measurements data

3. assess temporal and spatial variability.

To fill these research gaps, this research proposes the general mixed-effect model, joint

modeling method, and functional principal component analysis-based prognostics. Even-

tually a general spatio-temporal model is proposed based on the aforementioned methods,

where spatial, temporal trends and their dependency will be quantified, analog to as the

variation between units , temporal variability, and their correlation.
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3. PROGNOSTICS BASED ON GENERAL MIXED-EFFECT
MODEL

This chapter presents the application of general mixed-effect model (GMM) in prognostics

modeling and the case study of lithium ion battery capacity degradation is used to demon-

strate the proposed method.

GMMs containing fixed and random effects are widely used to account multiple sources

of variability in repeated measures and longitudinal data. The fixed effects can be inter-

preted as the characteristics of the population average over measuremenets. The random

effects show the variation of units. The combination of fixed and random effects illustrates

the variability in a stochastic process [86]. General mixed-effect models can be used to

quantify between-unit variability coming from the systematic difference among units in re-

peated measurement data and within the degradation process from the temporal stochastic.

This research proposes a general linear mixed-effect model-based prognostics methodol-

ogy to investigate the multiple sources of variability within the repeated measurement data.

Covariate identification, model selection, and time to failure prediction are included in the

proposed method. Figure 3.1 presents the procedure of prognostics based on the general

mixed-effect model.

3.1 General mixed-effect model

Let yij , i = 1, . . . , n, j = 1, . . . ,mi be the jth measurement on the ith unit, where n

is the number of units and mi is the number of measurements on the ith unit. The mixed-

effect model has a two-level representation, i.e., within-unit and between-unit. For a certain

j, j = 1, . . . ,mi, the within-unit regression model is given by

yij = zijβi + eij, i = 1, . . . , n, j = 1, . . . ,mi, (3.1)
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where βi is a q × 1 vector of regression coefficient that is specific for the ith unit. zij

is the jth row of Zi, a mi × q matrices of covariates. eij ∼ N(0, σij) are zero mean

residuals. In the between-unit stage, βi, i = 1, . . . , n are considered as q-dimensional

random vector with mean of E(βi) = Aiα and variance var(βi) = D. Ai is a diagonal

matrix with diagonal entities which are factors that vary from unit to unit and α is the

regression coefficients depends only the population average as shown in Equation (3.2).

That is, βi can be interpreted as a special case of the population average coefficient α. Let

bi, i = 1, . . . , n, be a random variable with the mean of zero and variance D. Therefore,

βi can be rewritten as Equation (3.3).

Ai =



ali 0 0 · · · 0

0 a2i 0 · · · 0

0 0 a3i · · · 0
...

...
...

...
...

0 0 0 · · · aqi


,α = (αT1 , . . . , α

T
q ). (3.2)

βi = Aiα+ bi (3.3)
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Substituting Equation (3.3) in the matrix of Equation (3.1), between-unit regression model

can be written as Equation (3.4).

yi = Ziβi + ei,

yi = ZiAiα+Zibi + ei,

yi = Xiα+Zibi + ei,

(3.4)

where ei is a zero mean multivariate normal random variable, i.e., ei ∼MVN(0,Σe). The

dimension of Σe is determined by the number of measurements of each unit. By assuming

that there are the same number of measurements of each unit, i.e., balanced data, Σe can

be written as σ2
i I . To make this mixed model more flexible, a generic covariate vector X i

is used to replace ZiAi. α and bi are called fixed and random effects coefficients, respec-

tively. Assuming that bi are independently distributed as multivariate normal distribution,

i.e., bi ∼ MVN(0,D). The response yi can be illustrated in the form of a multivariate

normal distribution with the mean X iα and the covariance ZiDZi + σ2
i I as shown in

Equation (3.5).

yi ∼MVN(X iα,ZiDZi + σ2
i I). (3.5)

According to Equation (3.5), the maximum likelihood estimation (MLE) is an intuitive way

to estimate the parameters α, D, and σi. Cnaan et al. [87] discussed the basic MLE of α

and the variance ZiDZi + σ2
i I , as shown in Equation (3.6).

α̂ =
∑

XT
i V̂iX i

∑
XT

i V̂iyi,

V̂i = ZiD̂Z
T
i + σ̂2

i I.
(3.6)

A R package developed by Bates et al. [88], lme4 in R [89], is used in this research to

estimate the fixed and random effects. The main idea of this function is based on the

penalized weighted residual sum-of-squares on the α,D and σi.

3.1.1 Model selection

Model selection is utilized to select parsimonious models with desirable properties. The

existence of fixed and random effects complicates the model selection in mixed-effect mod-

els. There are two major steps in model selection for a mixed effects model, the first one
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being covariates identification. Predictive covariates are used to illustrate the degradation

mechanism. It is an intutive idea to use physics-based models to select the candidates of co-

variates. For example, the measurement factor, such as measurement time t, is usually the

first choice of covariates for repeated measurement data. Physical understanding is needed

to specify the function form of the measurement time, e.g., t, t2, or
√
t. Especially when

the number of fixed and random effects is not known, a subset of covariates determined

based on physics-based models can be helpful to decrease the cost of the mixed model.

When there are large number of candidates, statistical tools, such as analysis of variance

(ANONA) and L1 norm penalized least square (LASSO), can be used to find the optimal

subset [90]. This research applies design of experiment and ANOVA to select the identified

candidate covariates through physics-based models [91]. The second step is to determine

the fixed and random effects. The selected model is expected to be a well-fitting and also in

an intuitive interpretation form. Information criteria including Akaike’s Information (AIC)

and Bayesian Information Criteria (BIC) is the most commonly used techinique for model

selection [92]. Due to the high robustness of BIC in multi-variance structure mixed-effect

models, this reserach uses BIC to select the optimal model. BIC is the log-likelihood-based

metric for model selection that overcomes the over parameterization issue by penalizing the

number of model parameters as well as the data size [93]. Equation (3.7) illustrates the cal-

culation of BIC. A smaller BIC value indicates a better model fit.

BIC = −2`+ (p− 2) log(n),

` = −n
2

(log 2π + log
n∑
i=1

(ŷi − yi)2 + 1),
(3.7)

where p is the number of parameters in the model and n is the total number of observed

measurements.
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3.1.2 Performance prediction and time to failure distribution

3.1.2.1 Performance prediction

This research investigates two types of data input schemes, i.e., the cumulative data in-

put and moving window data input. Cumulative data input is to incorporate all the available

historical data to predict future values. It is obvious that the strength of the “impact” that

one measurement has on another measurement will on average decay as a function of their

corresponding time lag in the time sequence. For a relatively slow degradation process,

such as lithium ion battery capacity degradation, the previous data has a weak effect on the

current observation and might distort the prediction. The concept of moving-window is to

use information of the most recent observations to predict the future values. Models based

on a large window become the less specific information along the perturbation direction,

while those based on a small window are more effective in obtaining the pertinent informa-

tion of perturbation direction. But the small moving window might not be robust with high

noise levels. The optimal length of moving window can be determined by the prediction

performance.

The prediction performance of moving window input and cumulative input schemes

can be assessed through the deviation between the predicted and actual value. There are

two major prediction strategies, one step ahead prediction and multi-step ahead prediction.

In multi-step ahead prediction, the variable of more than two steps ahead is estimated based

on all or some previous observations. One step ahead prediction is to estimate the variable

of next step immediately. Uncertainties, such as an accumulative errors, arise from various

sources in multi-step ahead prediction. To avoid such uncertainties and obtain the “best”

model parameter, one step ahead prediction is used to determine the optimal length of

the moving window and then compare the performance of the aforementioned two data

input schemes. The mean absolute deviation (MAD) as shown in Equation (3.8) used in

this research as the prediction performance of the aforementioned two data input schemes.
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Lower the MAD is, more accurate the prediction is. Figure 3.2 presents the moving window

and cumulative data input strategies for one-step ahead prediction.

MAD =

∑n
i=1 |∆i − ∆̄|

n
,

∆i = yobserved − ypredicted,

∆̄ =

∑n
i=1

n
∆i.

(3.8)

Moving-window Data Input:
Optimal length of window = m, and n = m+1

5≤m≤N-1

1 2 3 N…

Model 1 n

Residual

…

m …n

1 2 3 N…

Model 2 n+1

Residual

m …n n+1

1 2 3 N…

Model N-m N

Residual

N-m …
N-1

Cumulative Data Input:

1 2 3 N…
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Residual

m …n n+1

1 2 3 N…

Model N-m N

Residual

N-m …
N-1

Figure 3.2: Moving window and cumulative data input scheme for performance prediction

[59]

3.1.2.2 Time to failure distribution assessment

Based on the selected prediction model, time to failure (TTF) can be estimated with the

given the failure performance threshold. Due to random effects, random effects coefficients

are estimated and given in the form of statistical distributions. That is, coefficients are

random variables. Based on the basic idea of the numerical simulation, random samples

of coefficients can be obtained from their statistical distributions. For each sample, a point

of time to failure can easily be calculated based on the degradation model. With a certain

number of simulated TTF points, such as 10,000, the distribution of TTF can be evaluated.
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3.2 A Bayesian approach for Li-Ion battery capacity fade modeling and cycles to

failure prognostics

This research investigates the application of general mixed-effect regression model in

battery capacity fade modeling over repetitive cycles by considering both within-battery

and between-battery variations. Physics-based covariates are integrated with functional

forms for modeling the capacity fade. A systematic approach based on co-variate identi-

fication, model selection, and a strategy for prognostics data. selection is presented. The

proposed Bayesian method is capable of quantifying the uncertainties in predicting battery

capacity / power fade and end-of-life cycles to failure distribution under various operating

conditions.

3.2.1 State of the art

Lithium Ion batteries attract increasing attentions due to their high energy density and

long lifetime. Battery capacity is defined as the maximum amount of electric charge that a

fully charged battery can deliver, which is one of three major performance indicators along

with the internal resistance and self-discharge. The lifetime of a battery is deemed to end

when its capacity reaches 80% of the initial capacity in general. The loss of active Lithium

ions during the micro-electrochemical reaction inside the battery during charge/discharge

process causes the capacity fade. In order to extend the lifetime of batteries, extensive

research has been conducted to explore new battery materials for electrodes and elec-

trolytes, designing new electrode structures, and investigating various battery aging mech-

anisms [94–107]. Capacity fade prediction over repetitive charge/discharge cycling based

on quantitative mathematical models is another important research topic. Accurate esti-

mation and prediction of battery failure time provides the decision information for timely

replacement of degraded batteries before the batteries reach the end of their useful life.

Battery capacity fade is mainly attributable to electrochemical reactions, and the asso-

ciated factors causing such reactions can be leveraged for accurate performance degra-

dation prediction [108]. These factors include charge-discharge protocol, temperature,
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state of charge (SOC), and materials of electrode and electrolyte. For different types

of batteries, capacity fade mechanisms are usually dominated by unique aging mecha-

nisms [109–111]. For example, it has been demonstrated that active lithium loss due to

electrolyte decomposition forming the solid electrolyte interphase (SEI) in the carbon neg-

ative is the dominant aging mechanism for LiFePO4 batteries [110]. It has also been

shown that a substantial decrease in the surface conductivity in lithium nickel cobalt alu-

minum oxide (LiNi0.8Co0.15Al0.05O2) cells dominate the cells’ aging processes [111]. In

addition, Broussely et al. [109] observed that the anode’s structural instability due to vol-

umetric change induced stress during repeated charge/discharge cycling can also lead to

accelerated capacity fade. Smith et al. [112] interpreted the degradation mechanism of Li-

ion cells using a lithium inventory model to account for the unwanted parasitic reactions

during the battery charge and discharge cycling process. Parasitic processes and reactions,

including the solid electrolyte interphase (SEI) growth and repair at the negative electrode,

the electrolyte oxidation at the positive electrode, the dissolution of transition metal ions,

and the rate of positive electrode damage, are incorporated in the proposed lithium inven-

tory model.

The uncertainties occurring during the chemical reactions result in the difficulties of

the estimation of capacity fade under cycling usage. A variety of approaches to capture the

randomness of the capacity fade are reported in recent literature, which can be categorized

mainly into data-driven and hybrid methods [113]. Data-driven prognostic techniques in-

corporate the available and historical information to statistically and probabilistically derive

decisions, estimates, and predicts the health and reliability [10]. Many works of machine

learning algorithm have been adopted for modeling batteries performance, such as Support

vector machines (SVMs) [52, 114–116], Relevance vector machines (RVMs) [117, 118],

k-nearest neighbor (kNN) [119], and Artificial neural network (ANN) [120–126]. The

concept of entropy from the information theory is also applied to model the battery ca-

pacity, which is proved to be very effective to quantify the capacity variation information

with non-standard charge/discharge cycling [127, 128]. Data-driven methods can provide

parsimonious models with accurate prediction performance. However, it can become very
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difficult to provide meaningful physical understandings to covariates in these models. Hy-

brid methods incorporate the physics of failure into data-driven methods. From the elec-

trical engineering point of view, filter-based methods are developed to evaluate the state

of charge based on the change of the open-circuit voltage and estimate the capacity of

Lithium Ion batteries within a closed circuit [129–139]. From the electrochemical point

of view, the formation, growth, and repair of solid electrolyte interface (SEI) are the main

reasons for losing active lithium ions [93,140,141]. Analytic models of capacity fading are

explored through analyzing the chemical process of SEI’s formation and growth [142,143].

Some literature, such as [56, 144–148], focus on the temporal uncertainty in the capacity

degradation process.

Most of the aforementioned literature, however, fails to quantify multiple sources of

uncertainties in the battery degradation process modeling, such as within-unit and between-

unit variations. To fill the mentioned gap, this paper aims to investigate the multiple sources

of variations in repeated measurement design involving multiple units. Repeated measure-

ment design is motivated by the desire of quantifying statistical uncertainties in a process.

Multiple responses of each experimental unit in multiple conditions and occasions and

multiple units are observed so that variation of within-unit and between-unit over the mea-

surement factors can be detected. Guo et al. [59] proposed a mixed-effect model with the

moving window to investigate between-and-with unit uncertainties in the capacity degra-

dation using balanced data.

The novel Bayesian method based on the general mixed-effect model, discussed in

Section 3.1, is used to investigate battery capacity fade over repetitive cycles by considering

both within-battery and between-battery variations. Physics-based covariates are integrated

with functional forms for modeling the capacity fade. A systematic approach based on

covariate identification, model selection, and a strategy for prognostics data selection is

presented. The proposed Bayesian method is capable of quantifying the uncertainties in

predicting battery capacity fade and end-of-life cycles to failure distributions under various

operating conditions. The schematics for battery capacity fade modeling and prognostics

is shown in Figure 3.3.
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Battery Capacity Fade Modeling and Prognostics

Step 1: Covariates Selection

Physics-based Hybrid: Physics-based and Data-drivenData-driven

Step 2: Model Selection

Fixed Effect Models Random Effect Models
Bayesian Information Criteria

Step3: Prognostics

One-step-ahead Prediction Cycle to Failure Distribution

Moving Windows Data Input Cumulative Data Input

Figure 3.3: Schematic for battery capacity fade modeling and prognostics

3.2.2 Covariate identification and selection

To accurately model the capacity fade of Li-Ion batteries, appropriate predictors or

covariates need to be identified such that a specific functional prediction model can be es-

tablished using the identified predictors. The functional prediction models also need to

consider the physics-of-failure mechanisms based on the major failure modes of Li-Ion

batteries, such as the formation, repair, and restoration of the solid electrolyte interphase

(SEI). SEI formation can be related to battery type, charge/discharge cycles, charge rate,

and environmental factors. Among these candidates, designed experiments are used to

select the major significant covariates associated with capacity fade so that adequate pre-

dictive models can be built.

3.2.2.1 Predictive covariate identification based on physics-of-failure analysis

Battery capacity fade over time is usually attributed to the internal electrochemical

reactions of battery cells. Capacity fade also depends on varying external environment all
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conditions, operating conditions, and battery materials. In the literature, SEI formation and

increases in anode impedance are regarded at the main failure modes of Li-ion batteries,

and are related to the charge-discharge rate, cycle number, temperature, and anode material

particle size. We studied the capacity fade effects related to battery types, discharge rates,

and the number of charge/discharge cycles.

3.2.2.2 Covariate selection based on designed experiments

The aforementioned aging factors of battery capacity fade were investigated using full

factorial design of experiments. Eight batteries from two types of LiCoO2 batteries with

different structural configurations, denoted as CS2 and CX2, were tested at two levels of

discharge rates (0.5C and 1C) [91]. The basic specification description of these batteries is

shown in Table 3.1.

Table 3.1: Specifications of battery CS2 and batteryCX2

Rating capacity(Ah) Cathode Anode Weight(g) Dimensions(mm)

CS2 1.10 LiCoO2 graphite 21.1 5.4× 33.6× 50.6

CX2 1.35 LiCoO2 graphite 28.0 6.6× 33.8× 50.0

All batteries were tested under the same charge-discharge profile: each battery was first

charged at a constant current rate until the voltage reached a cutoff value, then a constant

voltage charging was sustained until the charge current dropped to a threshold value. The

battery was discharged at a constant current until the discharging voltage dropped to a

cutoff value. The current and voltage change profiles are shown in Figure 3.4. The cutoff

voltage was set as 4.2V (charging cutoff value) and 2.7V (discharging cutoff value) in these

tests. Of the eight batteries of two types, four of them, i.e.,CS2 33, CS2 34,CS2 35, and

CS2 36, were tested under the profile in which the discharge rate was 0.5C, and the other

four, i.e.,CX2 33,CX2 34, CX2 35,and CX2 36 were tested under a 1C discharge rate. The

experimental settings and battery specifications are summarized in Table 3.2. Table 3.3
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Figure 3.4: Current and voltage profiles under two levels of discharge rates

shows the test results of both capacity and power fade data of the eight batteries. Figure

3.5 presents the individual battery capacity and power fade over the charge and discharge

cycles.

Table 3.2: Summary of experiment data

Sample Discharge rate Cycles number Test time (h)

CS2

CS2 33 0.5C 862 3120.1

CS2 34 0.5C 774 5055.7

CS2 35 1C 930 2664.6

CS2 36 1C 970 2702.6

CX2

CX2 33 0.5C 1071 4411.8

CX2 35 0.5C 1747 6908.1

CX2 34 1C 1724 5158.0

CX2 36 1C 1958 5926.0

Based on the collected battery performance degradation data and pre-set experiment

conditions, a full factorial design with two replications was implemented to evaluate the

capacity fade over prolonged usage life. Number of cycles, discharge rate, and battery type
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Table 3.3: Test results for CS2 and CX2 batteries

Sample Cycle to failure Starting capacity(Ah) Ending capacity(Ah) Starting discharge energy(Wh) Ending discharge energy(Wh)

CS2 33 615 1.16 0.06 4.34 0.56

CS2 34 564 1.15 0.52 4.28 1.83

CS2 35 645 1.14 0.30 4.16 1.02

CS2 36 549 1.16 0.37 4.18 0.58

CX2 33 704 1.29 1.01 4.76 3.65

CX2 34 703 1.36 0.56 4.86 1.88

CX2 35 912 1.35 0.56 5.04 1.95

CX2 36 762 1.36 0.54 4.08 1.81
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Figure 3.5: Capacity and power fade over cycles for battery types CS2 and CX2

were considered in this experimental design, and the levels of each factor were designed

as in Table 3.4. The ANOVA results of the full factorial experiment are shown in Table

3.5. At α = 0.05 significance level, the number of cycles and battery type are significant

with respect to capacity fade for individual effects and interaction effects. The discharge
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rate and its interactions with the other two factors were not significant at the two selected

discharge rates. As a result, different types of batteries need to adopt different capacity fade

models.

Based on both physics of failure analysis and design of experiment analysis, the number

of cycles is important covariate for the battery capacity fade. Moreover, The thickness or

growth of SEI has been physically modeled to be proportional to the square root of the

number of cycles [110]. Ecker et al. [149] investigated the calendar cycle life of Li-ion

batteries and developed capacity fade models with variables of time, square root of time

and logarithm time. Bloom et al. [150] demonstrated that the area-specific impedance rise

and power fade both follow the square root of time kinetics, which explains the SEI layer

growth. In literature, capacity has also been modeled as a function of the logarithm of the

number of cycles [111]. Therefore, it can be concluded that the square root of cycles and

logarithm of cycles are the candidate functional forms for capacity fade modeling.

Table 3.4: Design factors and factors levels

Factor Levels Values

Cycle 4 0-300 500-600 600-900 > 900

Discharge rate 2 0.5C 1C

Battery type 2 CS2 CX2

3.2.3 Capacity fade modeling using linear mixed effects models

Given identified predictive covariates and its candidate functional forms, seven models

with various combinations of fixed effects and random effects are built to quantify uncer-

tainties due to both between-battery and within-battery variations. The explored models are

evaluated and compared using Bayesian Information Criterion (BIC), and an optimal model

is selected for modeling battery capacity fade and health prognostics. Equation (3.9)-(3.15)

present these seven models.
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Table 3.5: Analysis of variance for capacity, using adjusted Sum of Squares (SS) for tests

Source DF Seq SS Adj SS Adj MS F P

Cycle 3 1.13546 1.31547 0.43849 164.37 0.000

Discharge Rate 1 0.00783 0.00002 0.00002 0.01 0.937

Battery Type 1 1.2651 1.19625 1.19625 448.41 0.000

Cycle * Discharge Rate 3 0.00858 0.00165 0.00055 0.21 0.891

Cycle * Battery Type 3 0.34180 0.35201 0.11734 43.98 0.000

Discharge Rate * Battery Type 1 0.00389 0.00490 0.00490 1.84 0.195

Cycle * Discharge Rate * Battery Type 3 0.00928 0.00928 0.00309 1.16 0.358

Error 15 0.04002 0.04002 0.00267

Total 30 2.67336

S=0.00516505, R-Sq=98.50%, R-Sq(adj)=97.01%

1. Capacity fade models with square root of cycle as a covariate

Model 1: Fixed effect intercept and slope model:

yj[i] = α + β1 ×
√
tj[i] + εi

εi ∼ N(0, σ2), i = 1, 2, · · · , nJ
(3.9)

Model 2: Random effect intercept and slope model:

yj[i] = αj[i] + β1j[i] ×
√
tj[i] + εi

αj ∼ N(µα, σ
2
α), β1j ∼ N(µβ1 , σ

2
β1

)

(αi, β1j) ∼MVN((µα, µβ1)
T ,Σ), j = 1, 2, · · · , J, i = 1, 2, · · · , nJ .

(3.10)

2. Capacity fade model with logarithm of cycle as a covariate

Model 3: Fixed effect intercept and slope model:

yj[i] = α + β2 × log tj[i] + εi

εi ∼ N(0,σ2), j = 1, 2, · · · , J, i = 1, 2, · · · , nJ .
(3.11)
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Figure 3.6: Fitted values of Model 2 compared to observed values

Model 4: Random effect intercept and random slope model:

yj[i] = αj[i] + β2j[i] × log tj[i] + εi

αj ∼ N(µα,σ
2
α), β2j ∼ N(µβ2 , σ

2
β2

), ε ∼ N(0, σ2)

(αj, β2j) ∼MVN((µα, µβ2)
T ,Σ), j = 1, 2, · · · , J, i = 1, 2, · · · , nJ .

(3.12)
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Figure 3.7: Fitted values of M4 compared to observed values

3. Capacity fade and model with logarithm of cycle and square root cycle as covariates
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Model 5: Fixed effect intercept and slope for the square root cycle and logarithm cycle

models:

yj[i] = α + β1 ×
√
tj[i] + β2 × log tj[i] + εi

εi ∼N(0, σ2), j = 1, 2, · · · , J, i = 1, 2, · · · , nJ
(3.13)

Model 6: Random effect intercept and slope mode for both the square root cycle and the

logarithm cycle models:

yj[i] = αj[i] + β1j[i] ×
√
tj[i] + β2j[i] × log tj[i] + εi

αj ∼N(µα, σ
2
α), β1j ∼ N(µβ1 , σ

2
β1

), β2j ∼ N(µβ2 , σ
2
β2

)

(αj, β1j, β2j) ∼MVN((µα, µβ1 , µβ2)
T ,Σ), j = 1, 2, · · · , J, i = 1, 2, · · · , nJ .

(3.14)

Model 7: Varying intercept and varying slope models for both the square root cycle and the

logarithm cycle with an interaction term:

yj[i] = αj[i] + β1j[i] × log tj[i] + β2j[i] ×
√
tj[i] + β3j[i] ×

√
tj[i] × log tj[i] + εi

αj ∼ N(µα, σ
2
α), β1j ∼ N(µβ1 , σ

2
β1

), β2j ∼ N(µβ2 , σ
2
β2

), β3j ∼ N(µβ3 , σ
2
β3

)

εi ∼ N(0, σ2), (αj, β1j, β2j, β3j) ∼MVN((µα, µβ1 , µβ2 , µβ3)
T ,Σ)

j = 1, 2, · · · , J, i = 1, 2, · · · , nJ .

(3.15)

where yj[i] is the ith observation of the jth unit, tj[i] is the measurement time, i.e., the

number of cycles in this case. α, β, αj , and βj are the mixed effects coefficients.

3.2.4 Model selection using BIC

The optimal model from the seven candidate capacity fade models can be selected based

on the Bayesian Information Criterion (BIC). BIC, as shown in Equation (3.7), is a log-

likelihood-based metric for model selection that overcomes the over parameterization issue

by penalizing the number of model parameters as well as the data size [93]. A smaller BIC

value indicates a better model fit. The parameters of the random effects and BIC values of

all the models have been estimated using R ”lme4” package, as shown in Table 3.6. It was

observed that all the models with random effects have smaller BIC values than those with
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Figure 3.8: Fitted values of Models 5 and 7 compared to observed values

fixed effects, which indicates that between-battery variations cannot be ignored. Models

with the square root of time can explain capacity fade better than those with logarithm time

according to the comparison of Model 1 with Model 3 as well as Model 2 with Model 4.

Model 7, which includes both the square root of time and logarithm time as well as their

interaction effect, has the smallest BIC value of all seven models. As a result, Model 7

can be selected for battery capacity fade modeling and health prognostics. In addition, the

mean and standard deviation of Model 7 are the smallest for the capacity estimate using the

last 100 cycles of data, which indicates that Model 7 has the optimal fitting result (Table

3.6 and 3.7). The above model selection is based on the CS2-type battery data. Using the

capacity fade data from the other type of CX2 cells, Model 7 also shows a good fitting

result, as seen from Figure 3.9. The deviations between the predicted results and observed

values fall randomly around zero. Power fade is the other way of measuring Li-ion battery

performance. Given that power fade shares similar causes with capacity fade, such as the

formation of SEI, it is reasonable to apply the similar functional form of cycles used in

capacity fade modeling for power fade modeling. Figure 3.10 shows the fitting results

based on Model 7 for power fade prediction using the CS2 battery data. The fitting results

indicate that Model 7 is a good candidate for both capacity and power fade prediction.
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Table 3.6: Parameter estimates for Model 1-7

Model Model type α β1 β2 β3 σ BIC

M1 Fixed 1.182 -0.010 - - - -9620.9

M2 Random N(1.18, 0.032) N(−0.01, 0.0012) - - 0.021 -10508.2

M3 Fixed 1.302 - -0.053 - - -8221.2

M4 Random N(1.299, 0.0282) - N(−0.052, 0.0022) - 0.032 -8663.9

M5 Fixed 1.106 -0.015 0.028 - - -9870.8

M6 Random N(1.107, 0.0062) N(−0.015, 0.0032) N(0.028, 0.0132) - 0.019 -10952.3

M7 Random N(1.096, 0.0172) N(0.120, 0.0252) N(−1.107, 0.0312) N(−0.016, 0.0032) 0.015 -11967.2

Table 3.7: Mean and standard deviation for the deviations

Model Average deviation of last 100 cycles BIC

M1 -0.021 -9620.9

M2 -0.021 -10508.2

M3 -0.041 -8221.2

M4 -0.041 -8663.9

M5 -0.014 -9870.8

M6 -0.015 -10952.3

M7 -0.006 -11967.2

3.2.5 One-step-ahead capacity prognostics and end-of-life cycle distribution

With the selected capacity fade model (Model 7), in this section, we proceed with deter-

mining an optimal data input strategy for accurate one- step-ahead capacity fade prognos-

tics. Two types of data input schemes are investigated, i.e., the cumulative data input and

moving window data input. The prognostics performance of these two data input schemes

was assessed using the mean absolute deviation (MAD) metric based on predicted capacity

and actual observed capacity values, see Figure 3.11. We also investigated the end-of-

life cycles to failure distributions, which can be further utilized for evaluating prediction

uncertainty.
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Figure 3.9: Model 7 for capacity fading of CX2 cells
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Figure 3.10: Model 7 for power fade of CS2 cells

3.2.5.1 One-step-ahead capacity fade prognostics

Data input strategies proposed to implement one-step-ahead capacity fade prognostics

over the repetitive cycling process are described as follows. The first method uses all of the

40



cumulative data to update the capacity fade model and predict the capacity at a given future

number of cycles. The cumulative data input method includes all historical information

across all tested battery cells for future capacity prediction. However, the prediction of next

cycle capacity using all previous capacity data may decrease the accuracy of the prediction

due to obsolete data inputs. The second method, which uses the data from a given length of

moving window, is studied, and its performance is compared with the cumulative data input

capacity fade prediction. The moving window data input method has the risk of missing

useful information by using a too short window length. Thus, determining the length of the

moving window becomes a critical step when this data input strategy is used.

Deviations of model-fitted capacity and observed capacity using two types of data input

methods are compared. In Figure 3.8, comparisons of moving window data input and

cumulative data input are shown. As an example, a moving window with a length of five is

used to demonstrate the basic logic of the moving window data input: the first five observed

data form the first window to predict the capacity at the sixth cycle based on parameters

estimated using the data in this window. Then, the five data points in the second window

(the second to the sixth one) are used to predict the capacity at the seventh cycle. Similarly,

the sth five data points (the sth to the s+ 4th data points) in the sth moving window can be

used to predict the s+ 5th cycle’s capacity, where 1 ≤ s ≤ n− 5, and n is the total number

of observed data points. Differences between predicted and observed capacity values, as

well as the mean of these differences, are calculated. Based on the same logic, set the

window length as l(5 ≤ l ≤ n − 1) , for the lth window,l ≤ s ≤ n − l, l of data points in

this window are used to predict the l + sth cycle’s capacity, and ∆s is set as the absolute

value of the difference between observation and prediction. The mean absolute deviation,

MADl , of each window is averaged over all ∆i. In summary, the MAD calculation can

be done in the following four steps:

(1) Set the length of moving window l, 5 ≤ l ≤ n, where n is total number of observed

data points.
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(2) Estimate the model parameters, α, β1, β2, and β3, for the selected moving window

length.

(3) Predict the l + sth cycle’s capacity for the sth window; the difference between the

predicted value and observed value δs is calculated, where l ≤ s ≤ n− l.

(4) Calculate the mean absolute deviation of the moving window l, MADl:

MADl =

∑
|∆s − ∆̄|
nl

,∆s = yos − yps, ∆̄ =

∑n−l
s=1 ∆s

nl
(3.16)

where nl, 1 ≤ nl ≤ n− l, is the number of moving windows for a window length l.

The deviation calculation of the cumulative data input method is relatively simpler. For

consistency, MADl is set as the deviation for the l, 5 ≤ l ≤ n− l the cycle’s capacity pre-

diction, which equals the difference between the prediction and observation. From Figure

3.11, it can be seen that the MADl of using the cumulative data input are all greater than

those of using the moving window data input method. Thus, the moving window data input

method should be used for battery fade modeling and health prognostics.

The two bottom panels in Figure 3.11 show that the moving window data input method

generally performed better than the cumulative data input method for one-step ahead ca-

pacity prediction over the whole observed number of cycles. However, battery health prog-

nostics near the end of life are usually more critical for failure prevention. Thus, we in-

vestigate the optimal moving window length for capacity prediction of the last 100 cycles

using historical capacity fade data. As shown in Figure 3.12, the minimum MAD value for

predicting the last 100 cycle capacity is achieved by choosing a moving window length of

195. To have a better understanding of the cycles to failure estimation near the end of the

battery life, the moving window data input method with an optimal window length of 195

is used to update the parameters estimate for model 7 for the last 15 experimental cycles.

The mixed effects coefficients are randomly generated based on their distribution. The end-

of-life probability distributions are evaluated using the moving window data input method

with an optimal window length of 195 for updating the random effect parameters in Model

7.
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Figure 3.11: Two types of data input schemes for capacity prognostics
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Figure 3.12: Determination of optimal moving window length

3.2.5.2 End-of-life cycles-to-failure distribution

In addition to the capacity prediction at a given number of cycles or a point estimate for

the number of cycles at the end-of-life, i.e., 80% of the initial rated capacity, the cycles-
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to-failure distribution near the end of battery life can provide further prediction uncertainty

information. In this section, we first determine the appropriate probability distribution

forms for the cycles-to-failure distribution using the best-fitted random effect model, then

study the cycles-to-failure prediction uncertainty close to the end of life using the optimal

moving window length, as discussed in the previous section. The random effect model

(Model 7) is used to simulate the number of cycles to failure. As discussed in Section

3.2.3, the random effect parameters in Model 7 follow a multivariate normal distribution.

The mvnorm function within the MASS package in R is used to simulate 10,000 samples

of each of the four parameters. The cycles to failure can then be evaluated using the battery

capacity failure threshold value of 0.88 Ah.

(αj, β1j, β2j, β3j) ∼MVN((µα, µβ1 , µβ2 , µβ3)
T ,Σ)

(µα, µβ1 , µβ2 , µβ3)
T =


1.097

0.120

−0.107

−0.016



Σ =


8.26e− 05 −1.04e− 05 1.02e− 04 1.18e− 05

−1.04e− 05 1.17e− 04 −1.65e− 05 −1.97e− 05

1.02e− 05 −1.66e− 05 2.50e− 04 1.54e− 06

1.18e− 05 −1.97e− 05 1.54e− 05 2.41e− 05



(3.17)

A goodness-of-fit test for the simulated cycles to failures was conducted using two

typical lifetime probability distributions, i.e., the Weibull distribution and Normal distri-

bution. Under the normal goodness-of-fit testing, a value close to 0.05 indicates that the

normal distribution is a good model for the cycle-to-failure distributions. The p-value for

the Weibull goodness-of-fit test is much less than 0.05, indicating that the Weibull model is

not an appropriate for modeling Li-ion batteries’ cycles to failure. This result is consistent

with existing literature findings based on physics-of-failure analysis. Figure 3.13 shows the

cycles-to-failure distribution under both Normal and Weibull probability distributions.

To have a better understanding of the cycles to failure estimation near the end battery

life, the moving window data input method with an optimal window length of 195 is used

44



Cycle to failure with failure threhould 0.88 Ah

D
en

si
ty

600 620 640 660 680

0.
00

0.
01

0.
02

0.
03

Normal
Weibull

mean = 635.2, sd = 11.2

Figure 3.13: Histogram and density function of cycles to failure and fitted distributions

to update the parameters estimate for model 7 for the last 15 experimental cycles. For

example, at cycle 500, data from cycle 305 and cycle 499 are used to estimate parameters:

α, β1, β2, and β3. Figure 3.14 shows the differences between the point estimate of capacity

prediction results and the observed actual capacity for the last 15 charge/discharge cycles.
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Figure 3.14: Differences between the actual and predicted capacity in late-stage

In addition, the end-of-life probability distributions are evaluated using the moving

window data input method with an optimal window length of 195 for updating the random
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effect parameters in Model 7. Figure 3.15 shows the fitted normal probability distributions

for the end-of-life cycles to failure. The means of these normal distributions range from

547.8 to 551.3, and the standard deviations range from 8.9 to 10.4. With the more recent

data inputs for parameter estimation, the mean of end-of-life prediction gets closer to 551

cycles from the initial 547 cycles.
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Figure 3.15: The distribution of cycles to failure in late stage
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3.2.6 Conclusion and future work

Predicting variables were first identified using designed experiments and existing liter-

ature results. A series of Bayesian fixed and random effects models using these predicting

variables was evaluated and compared using BIC for the best model selection. In addition

to using BIC as a model selection metric, the absolute mean deviation was also assessed

for model comparisons. The comparison results showed that the Bayesian random effect

model with the square root of cycle, logarithm of cycle, and their interaction as predic-

tors has the best fitting outcomes based on one type of battery data. The effectiveness of

the selected model for capacity fade modeling and prediction is further verified using the

other type of battery data. In addition to capacity fade modeling, power fade modeling is

investigated under the proposed method. We observed that the capacity fade models are

also appropriate for power fade modeling using the available testing data. To obtain better

capacity fade and end-of-life cycles to failure prediction results, two data input methods

for model parameter estimation and updating were investigated. We concluded that the

moving data input method provided better prediction results for lithium-ion battery health

prognostics. In this research, we also confirmed that the normal cycles to failure distribu-

tion is a better probability distribution model than the Weibull distribution model. Even

though the random effect models perform better than the traditional fixed effect models

with the between-battery variations better quantified, the residuals from the best fitted ran-

dom effects model still show a slight pattern, which indicates that certain variations are

not captured in the model. In our future research, we will explore more advanced ran-

dom effect Bayesian models to capture such auto-correlation patterns. We also plan to

test more batteries to increase sample size and include other stress factors in the model-

ing method. Moreover, the internal resistance, another main basic parameter determining

the performance of lithium ion batteries, limits the battery specific power and energy effi-

ciency. High internal resistance, especially in heavy loads such as power tools and electric

powertrains, can cause the battery to heat up and then the voltage to drop under load, lead-

ing to early failure. Therefore, some degradation studies intend to investigate the battery
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capacity degradation mechanism based on both capacity and internal resistance [151]. The

assumption of balanced data might not be true in many cases. There are two difficulties in

unbalanced data – one is to obtain the population average and the other one is to estimate

parameter in GMM. In Chapter 4, a prognostics model based on joint modeling method is

proposed to solve the aforementioned challenges.
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4. PROGNOSTICS BASED ON JOINT MODELING METHOD

In the repeated measurements analysis, the mixed effects model can be simplified as Equa-

tion (4.1), where yi represent the measurements of the ith unit, X i and Zi are the covari-

ates related to the fixed and random effects, respectively, and the errors are ei following

N(0,σ2I). α and bi are the fixed and random effects parameters, respectively. Under the

assumption of bi ∼ N(0,D), Equation (4.1) can be expressed in the form of a multivari-

ate normal distribution, i.e., Equation (3.5). By setting I as the same over all units, the

assumption of balanced data is made. With I i, different number of measurements of each

unit, we can obtain

yi = X iα+Zibi + ei

yi ∼MVN(X iα,ZiDZ
′
i + σ2

i I i)

yi ∼MVN(µi,Σi).

(4.1)

Given yi ∼ MVN(µi,Σi), the mean µi, a mi × 1 vector, describes the general trend of

the degradation process. The variance and correlation in the covariance matrix Σi, ami×q

matrix, indicate the the uncertainties and relationship between degradation levels at differ-

ent time point. For a multivariate normal distribution, it is a natural and feasible idea to

model the mean µi and covariance Σi individualy [152]. The concept of joint modeling is

introduced, where the mean and covariance are decomposed and then unknown parameters

of the mean function and covariance matrix are estimated jointly. This research proposes

a joint modeling method (JMM)-based prognostics. Without the assumption that all I i,

i = 1, . . . , N , are the same over all units, JMM can well address the issue of unbalanced

data. In the proposed method, mean, variance, and correlation of yi are firstly decomposed

based on Cholesky decomposition. Trigonometric functions then are used to parameterize

the correlation matrix so that the correlation matrix can be easily modeled with uncon-

strained parameters. To improve the prediction performance, covariates in JMM are also

selected based on the physical understanding of the degradation process of interest. Pe-
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nalized maximum likelihood estimation (PMLE) is proposed to estimate parameters of the

mean, variance, and correlation function so that high-fidelity and parsimonious model can

be obtained. For the purpose of comparison, the mean-covariance decomposition method

is also investigated, where the parameters of mean and covariance function are estimated

independently. The Gaussian process regression is used for prediction and the time to fail-

ure can be estimated through the numerical simulation. Being modeled as functions of

time-varying factors, the mean function indicates the longitudinal trend and quantifies the

temporal variation, while the variance function and correlation function illustrate the time-

varying random effects between-unit. Figure 4.1 presents the basic procedure of prognos-

tics based on joint modeling method.

Prognostics based on joint modeling 
method

Mean function Variance function

Covariates identification and selection 
of the above functions

Parameters estimation -Penalized 
MLE

Correlation function

Trigonometric parameterization 
of correlation matrix

Time to failure evaluation

Mean and covariance decomposition

Figure 4.1: Schematic of prognostics based on joint modeling method

4.1 Mean-variance-correlation decomposition and representation

This section presents the decomposition of the mean and covariance matrix based on

Chelosky decomposition.
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4.1.1 Modeling mean and covariance matrix

Given yi ∼MVN(µi,Σi), the concept of joint modeling method is introduced, where

the mean and covariance are decomposed and then unknown parameters of the mean func-

tion and covariance matrix are estimated jointly. Being modeled as functions of time-

varying factors, the mean function indicates the longitudinal trend and quantifies the tem-

poral variation, while the variance and correlation functions illustrate the time-varying

between-unit random effects.

The commonly used modeling approaches of the mean µi are generalized regression

models. For modeling the covariance matrix Σi, there are two major challenges: high di-

mensionality and positive definiteness. Unconstrained parameterization methods are used

to decompose the covariance matrix into unconstrained parameters to avoid high dimen-

sionality and ensure the positive definiteness. Pinheiro et al. [153] summarized five un-

constrained parameterizations of the covariance matrix, among which Cholesky decompo-

sition methods attract the most interests due to its high computation efficiency and easy

interpretation of entities of the decomposed matrix. The Cholesky decomposition-based

methods attract the most interest due to its high computation efficiency and easy interpre-

tation of entities of the decomposed matrix. Pourahmadi [154] proposed the joint mod-

eling of mean-variance-correlation based on Cholesky decomposition of the covariance

matrix. The entities of matrix T are interpreted as the auto-regression coefficients, where

Σi = T iDiT
′
i andDi = diag(σ2

i1, . . . , σ
2
imi

). Based on Pourahmadi’s work, approaches to

improve the interpretation of parameterization of covariance matrix with various forms of

Cholesky decompositions are explored. Smith et al. [155] and Chen et al. [156] interpreted

the entities of the decomposed matrix as one-step predictive coefficients and random effects

coefficients, respectively. In the framework of Cholesky decomposition, covariance matrix

of yi can be decomposed as Σi = DiRiDi, where Di represents a diagonal matrix with

entities of variances σij , 1 ≤ j ≤ mi and Ri with entities of (ρijk)
mi
j,k=1 is the correspond-

ing correlation matrix. Zhang et al. [157] characterized the entities of the decomposition

matrix as moving average parameters. Most currently, the geometric interpretation based
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on the trigonometric parameterization of the correlation matrix in [158] emerges due to its

advantages in computation and model interpretation [159, 160]. Entities of the correlation

matrix in trigonometric parameterization are represented as trigonometric functions which

can be modeled as functions of time-varying factors. In the framework of Cholesky de-

composition, a general joint model of the mean, variance, and correlation model can be

summarized as Equation (4.2).

yi ∼MVN(µi,Σi),Σi = T iDiT
′
i,

µi = m(xi,αΣi), logσ2
i = v(zi,β),ϕijk = d(wijk,γ),

(4.2)

where µi and logσ2
i are mean and logarithm of variance of the observations of the ith unit,

while ϕijk are entities of T i. xi, zi, and wijk represent the covariates, while α, β, and γ

signify the parameters of the mean, variance, and correlation function, respectively. This

research extends the application of the trigonometric parameterization in the correlation

matrix and applies JMM in prognostics modeling.

4.1.2 Trigonometric parameterization of correlation matrix

Since the correlation matrix is positive definite and symmetric with off-diagonal entities

between −1 and 1,Ri can be decomposed asRi = LiL
′
i, where Li is the lower triangular

decomposed matrix. The trigonometric parameterization is based on the Givens rotation

as shown in Equation (4.3). G(i, j;φ) is different from the m-dimensional identity matrix

with Gii = cos(φ), Gi,j = − sin(φ), Gj,i = sin(φ), and Gj,j = cos(φ). For a vector l,

G(i, j;φ)l rotates vector l anti-clockwise by the angle φ in {ei, ej}. For lij , the jth column

of L′i, there are j − 1 rotations from e1. That is, lij =
∏j−1

k=1 G(k, k + 1;φjk)e1. φijk ∈

[0, π) is the angle between the Pklij and ek, where Pik = {0, . . . , 0︸ ︷︷ ︸
k−1

, 1, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
mi−j+1

} and

ek = {0, . . . , 0︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
mi−k

} and φijk must make 〈lij, lik〉 = ρijk. Since the first column of

L′i is {1, 0, . . . , 0︸ ︷︷ ︸
mi−1

}, the other elements of Li can be parameterized as functions of angles.

For example, given 〈li1, li2〉 = cosφi21 = ρi21, li2 = {cosφi21, sinφi21, 0, . . . , 0︸ ︷︷ ︸
mi−2

} with
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φi21 = arccos ρi21. And given 〈li1, li3〉 = ρ31 and 〈li2, li3〉 = ρ32, li3 =

{cosφi31, cosφi32 sinφi21, sinφi32 sinφi31, 0, . . . , 0︸ ︷︷ ︸
mi−3

} with φi31 = arccos ρi31 and φi32 =

arccos
[ ρi32 − ρi21ρi31

sin(arccos ρi21) sin(arccos ρi31)

]
. With the same logic, we can represent elements

of Li using trigonometric functions, as shown in Equation (4.4). With ρijk =
∑k

l=1 lijllikl,

the relationship between correlation coefficients and angles can also be obtained, as shown

in Equation (4.5).

G(i, j;φ) =



1 · · · 0 · · · 0 · · · 0
... . . . ... . . . ... . . . ...

0 · · · cos(φ) · · · − sin(φ) · · · 0
... . . . ... . . . ... . . . ...

0 · · · sin(φ) · · · cos(φ) · · · 0
... . . . ... . . . ... . . . ...

0 · · · 0 · · · 0 · · · 1



. (4.3)

li11 = 1; lij1 = cos(φij1), 1 ≤ j ≤ mi;

lijk =


cos(φijk)

k−1∏
l=1

sin(φijl), 2 ≤ k < j ≤ mi;

k−1∏
l=1

sin(φijl), k = j; j = 2, · · · ,mi.

(4.4)

ρij1 = cosφij1, ρijj = 1

ρijk =
k−1∑
l=1

[cos(φijl) cos(φikl)
l−1∏
t=1

sin(φijt) sin(φikt)]

+ cos(φijk)
k−1∏
l=1

sin(φijl) sin(φikl), 2 ≤ k < j ≤ mi

φijk = arccos
[
lijk/

k−1∏
l=1

sin(φijl)
]
, 1 ≤ k < j ≤ mi

(4.5)

Equaiton (4.5) maps from a general correlation matrixRi to the angles φijk. Angles φijk are

unconstrained in the range of [0, π) and can be easily driven by the time-varying factors.

Then the entities of the correlation matrix can be modeled as a function of time-varying
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factors. Modeling φijk can also reduce the number of time-varying factors when the di-

mensionality of yi increases [159]. For a degradation process, we can have a joint model

of mean-variance-correlation can be rewritten as Equation (4.6).

µi = m(X i,α), logσ2
i = v(Zi,β), φijk = d(W ijk,γ) (4.6)

where µi, logσ2
i , and φijk are the mean, log-variance, and angles. Functions m(·), v(·),

and d(·) are the mean, log-variance, and angles functions. Specific cases of linear models

of m(·), v(·), and d(·), such as polynomial models, are practical interest. Covariates X i,

Zi, andW ijk can be determined according to the characteristics of the degradation process

of interest. α, β, and γ are the unknown parameters.

4.1.3 Covariate identification and selection

The selection of covariates in the joint model mainly depends on the physical under-

standing of the degradation process. In Equation (4.6), xi are the covariates that are used to

model the mean of the measurements. The selection of xi might mainly depend on the an-

alytic model of the degradation process, i.e., the physics-based model. For example, in the

battery capacity degradation, it is a natural idea that the covariates could be selected from

the factors affecting SEI formation during the electro-chemical reaction, such as the num-

ber of cycles, charge rate and discharge rate, temperature, etc. These factors are also good

candidates of zi, the covariates of the logarithm square variance of the jth observations.

The correlation between measurements yi and yj decay over the time difference between

the measurements. Thus wijk should include time varying covariates that may depend on

measurement time tik and tij as it is capturing the correlation between the responses at

these two measurement time.

4.1.4 Mean-covariance decomposition-based method

Based on the mean, log-variance, and angles in Equation (4.6), the mean-covariance

decomposition (MCD)-based method is investigated, where the three functions are mod-
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eled and their parameters are estimated independently. The motivation of the MCD-based

method is to explore the characateristics of the mean, log-variance, and angles. Results of

the MCD-based method can be used as the initial solution of the joint modeling method.

4.1.4.1 Moving-window scheme

Considering of large scale of variance and angles for correlations, the concept of mov-

ing window is introduced to improve the prediction accuracy and computational complex-

ity. It is evident that the strength of the “impact” that one measurement has on another

measurement will depend on average decay as a function of their corresponding time lag

in the time sequence. For a relatively slow degradation process, such as lithium ion battery

capacity fading, the previous observations have a weak effect on the current observation

and might distort the prediction. The moving-window method is to use information from

the most recent observations to predict the future values. Models based on a large win-

dow provide less accurate information along the perturbation direction, while those based

on a small window are effective to obtain the pertinent information of perturbation direc-

tion. However, the small moving-window might not be robust with high noise level [161].

The optimal length of a moving window in this paper is determined using the prognostics

performance in the term of the mean absolute deviation (MAD) based on one-step-ahead

predicted value and actual observed value. The core of calculating MAD of one moving

window is to use a constant size of historical data to predict the next one value and obtain

the residual. The details of the four-steps of determining moving window length can be

found in [59]. Moreover, the moving-window scheme with the constant length simplifies

the modeling of the correlation which is the function of the difference between the mea-

sured time being the same for a certain length of the moving window. For each moving

window, parameters in Equation (4.4) are estimated through balancing the measurement fit

and the model complexity. The basic form of functions of mean, log-variance, and angles

for correlations can be obtained from the physical understanding and empirical functions.

For example, the chemical analytic model from [93, 142] can be referred to as the basic
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model of mean, which is discussed in Chapter 3. Due to the lack of physical understanding

of log-variance and correlation of the capacity degradation process, the log-variance logσ2
i

and angles φijk are estimated through non-parametric methods. This research uses the sup-

port vector machine (SVM) regression with ε-insensitive loss function in the consideration

of its advantages in efficiency, accuracy, and robustness.

4.1.4.2 Log-variance and correlation modeling using SVM

SVMs were developed to solve the classification and regression problem through sup-

port vector methods. The kernel function is a powerful tool to avoid the computation of high

dimensional inner product. As a kernel based method, SVM can project the original low di-

mension data space to high dimension feature space [162,163]. Support vectors are trained

in SVM regression so that the data points lie in between the two borders of the margin

which is maximized under suitable conditions to avoid outliers inclusion. SVM regression

is formulated as controlling the model complexity and margins through the squared norm

of the parameters vector and loss function respectively. Take a general regression model

y = wTg(x)+w0 for example. In this model, g(x) is a function mapping each input x to a

higher dimensional space,w = (w1, w2, . . . , wm)T denotes a set of linear weights connect-

ing the feature space g(x) to the output y, and w0 is the constant. Parametersw and w0 can

be estimated through minimizing w,w0,ξ,ξ
∗
1

2
‖ w ‖2 +C

∑m
i=1(ξi + ξ∗i ) with constraints of

wTg(xi) +w0− yi ≤ ε+ ξi, yi−wTg(xi)−w0 ≤ ε+ ξ∗i , ξi, ξ
∗
i ≥ 0, where slack variables

ξi and ξ∗i penalize predictions out of the ε-intensive tube, and the penalty parameter C > 0

determines the trade off between the flatness of the function and the amount up to which

deviations larger than ε are tolerated.

The above optimization problem can be transformed into the dual problem as
∑nsv

i=1(ai−

a∗i )g(xi)
Tg(x) + w0 with the constraint of 0 ≤ ai, a

∗
i ≤ C where ai, a∗i , i = 1, . . . , nSV

are the Lagrange multipliers and nsv is the number of support vectors. The inner product

g(xi)
Tg(x) can be integrated as a kernel function K(·). Karatzoglou et al. [164] summa-

rized the methods, such as sequential minimization optimization (SMO), chunking, and
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simple SVM, which are used to solve the quadratic optimization problem. Chang and

Lin [165] developed the library libsvm providing a very efficient SVM implementation

based on SMO, which is used in this paper. Moreover, in the aforementioned soft margin

optimization problem, there are three undetermined parameters, i.e., the kernel function

〈Φ(xi),Φ(xj)〉, the penalty parameter C, and ε. The choice of the kernel function depends

on the characteristics of the data. The Gaussian kernel k(µ, ν) = exp(γ ‖ µ − ν ‖2) and

polynomial kernel k(µ, ν) = (αµTν+c)d are often used for general purposes. The parame-

ters for Gaussian kernel parameter γ or that for polynomial kernel α and c are given for the

optimization problem. Usually the penalty C and γ are given on the intervals [2−5, 215] and

[2−15, 23]. Choosing the “best” parameters is needed for the selection of the best model.

Chang and Lin [165] proposed a grid-search method in the tune function of libsvm, where

various pairs of these given parameters tested over cross-validation randomized samples.

However, the grid search is very inefficient when the large scale data set is used as input

or small grid is required. This paper uses random search where multiple random sampled

candidates of C and γ are used for cross-validation based on the R function of SVM [166].

One of the major advantages of random search is to decrease the computation time so that

a large range of C and γ can be tested [167]. To model log-variances and angles in MCD,

their covariates, such as the number of cycles and cycle lags, are considered as inputs of

the kernel functions.

4.2 Joint modeling method

The aforementioned MCD method models the mean, log-variance, and angle functions

and estimate their parameters independently. Results of MCD method can be used as the

initial understanding the longitudinal trends and uncertainties in the degradation process.

However, With the assumption that yi ∼ MVN(µi,Σi), maximum likelihood estimation

(MLE) is one of the most effective candidate tools to estimate parameters in the joint model.

Given lack of analytic models of log-variance and angles for the corrlation, this research
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proposes a penalized MLE where a penalty function is added to the maximum likelihood

function to obtain the high-fidelity and parsimonious models.

4.2.1 Penalized maximum likelihood estimation

With the assumption that yi ∼ MVN(µi,Σi), penalized maximum likelihood esti-

mation (PMLE) is one of the most effective candidate tools to estimate parameters in the

joint model. Due to lack of analytic models of log-variance and angles, this paper employs

PLME where a penalty function is added to the maximum likelihood estimate to determine

parameters and select covariates simultaneously. For irreversible degradation processes,

each unit degrades variously. Therefore, there is only one observation for the multivariate

normal distribution of each degradation trajectory. Then the minus twice log-likelihood

function without the constant is

−2 log l(θ) =
n∑
i=1

log |Σi|+
n∑
i=1

(yi − µi)′Σ−1i (yi − µi), (4.7)

where θ is the parameter vector of the mean, log-variance, and angle functions. yi =

(yi1, . . . , yimi
)T is a mi × 1 vector. µi and Σi are the mean and covariance matrix of

multivariate normal distributions for the tested units.

There exists an unique lower triangular matrixQi satisfying Σi = Q−1i D
2
iQ
′−1
i . |Σi| =

|D2
i | =

∑mi

j=1 log σ2
ij can be obtained.

log |Σi| =
mi∑
j=1

log σ2
ij (4.8)

By Σi = DiLiL
′
iDi, Σ−1i = D−1i L

′−1
i L−1i D

−1
i ,

(yi −X iα)′Σ−1(yi −X iα) = [L−1i D
−1
i (yi −X iα)]′[L−1i D

−1
i (yi −X iα)]

=

mi∑
j=1

∆2
ij

(4.9)
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where ∆ij is the jth element of ∆i with ∆i = L−1i D
−1
i (yi−µi). As ∆i = L−1i D

−1
i (yi−

µi), ∆ij =
∑j

k=1

vijk
σij

(yij − µij), where vijk is the (j, k)th element of L−1i . Based on

Equation (4.8) and (4.9), the twice minus log-likelihood estimate can be written as

−2l(θ) =
n∑
i=1

mi∑
j=1

[log σ2
ij + ∆2

ij] (4.10)

By minimizing Equation (4.7), parameters can maximize the likelihood function given

the sample of observations and provide a parsimonious model. However, computation

infeasibility and instability come along with the maximum likelihood estimation [168,169].

A penalty function p(θ) can be added to Equation (4.10) to select the significant covariates

and estimate coefficients,

arg min
θ
PL(θ) =

n∑
i=1

mi∑
j=1

[log σ2
ij + ∆2

ij] + λp(θ), (4.11)

where λ is the tuning parameter. The penalty function p(θ) is selected to reduce the loss

in the estimation. Given the proposed joint model, penalties on parameters of α, β, and γ

can be used to reduce the model error and complexity. The LASSO method, p(θ) =‖ θ ‖1,

is used in this paper due to its advantages in the case of highly noisy observations. The

penalty differential of p(θ) is

Dλ =


−λ if θ < 0;

[−λ, λ] θ = 0;

λ θ > 0.

. (4.12)

To determine the tuning parameter λ, the Bayesian information criterion (BIC) is used. For

a given λ,

BIC(λ) = N log[σ2(λ)] + k(λ) log(N), (4.13)

where σ2(λ) = N−1[y− ŷ(λ)]TΣ(λ)−1(y− ŷ). k(λ) is the number of nonzero regression

coefficients. The λ that minimizes BIC(λ) is selected.
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4.2.2 Score functions and Fisher matrices

A Newton-Raphson method is used to obtain the penalized maximum likelihood (PMLE).

The relevant score functions and Fisher information matrices can be obtained.

S1(θ) =
n∑
i=1

X ′iΣ
−1(yi −X iα) +Dλ,

S2(θ) =
1

2

n∑
i=1

Z ′i(1mi
− T i) +Dλ

S3(θ) = −2
n∑
i=1

mi∑
j=1

[∂ log lijj
∂γ

∆2
ij + ∆ij

j−1∑
k=1

uijk∆ik

]
+Dλ

I11 =
n∑
i=1

X ′iΣ
−1X i, I22 =

1

4

n∑
i=1

Z ′i[Imi
+R−1i ◦Ri]Zi

I23 =
n∑
i=1

mi∑
j=1

(∂ log lijj
∂γ

+
1

2

j−1∑
k=1

uijk

j∑
l=k

lilkvijkz
′
il

)
,

I33 =
n∑
i=1

mi∑
j=1

(
4
∂ log lijj
∂γ

∂ log lijj
∂γ ′

+

j−1∑
k=1

uijku
′
ijk

)
I12 = IT21 = 0, I13 = IT31 = 0

(4.14)

where T i = diag{R−1i D−1i (yi − µi)(yi − µi)′D−1i }, 1mi
is a vector with elements of 1,

uijk =
∑j

l=k

∂lijk
∂γ

vijl, and vijl is the (j, l) element of L−1i .

The derivation of the score and Fisher matrices is as follows.

S1(θ) and I11 can be easily obtained.

S1(θ) =
∂PL(θ)

∂α
= X ′iΣ

−1(yi −X iα) +Dλ

I11 = −E
(∂S1(θ)

∂α′

)
=

n∑
i=1

X ′iΣ
−1X i

(4.15)

By log σ2
ij = zijβ, the score is

S2(θ) =
∂PL(θ)

∂β
=

n∑
i=1

mi∑
j=1

(zij + 2
∂∆ij

∂β
∆ij) +Dλ

=
n∑
i=1

mi∑
j=1

[zij −
j∑

k=1

vijk
σik

(yik − µik)zik
j∑

k=1

vijk
σik

(yik − µik)] +Dλ

=
n∑
i=1

Z ′i(1mi
− T i)

(4.16)
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where T i = diag{R−1i D−1i (yi −µi)(yi −µi)′D−1i } and 1mi
is a vector with elements of

1.

I22 = −E
(∂S2(θ)

∂β′

)
=

1

4

n∑
i=1

mi∑
j=1

[

j∑
k=1

vijk
σik

(yik − µik)zik
vijk
σik

(yik − µik)zik
j∑

k=1

vijk
σik

(yik − µik)zik]

=
1

4

n∑
i=1

Z ′i[Imi
+R−1i ◦Ri]Zi

(4.17)

I23 = −E
(∂S2(θ)

∂γ ′

)
=

n∑
i=1

mi∑
j=1

[∂ log lijj
∂γ

z′ij +
1

2

j−1∑
k=1

uijk

j∑
k=1

lilkvijkz
′
il

]
(4.18)

By Li∆i = D−1i (yi − µi), ∆ij =
1

lijj

(yij − µij
σij

−
∑j−1

k=1 lijk∆ik

)
. Therefore,

S3(θ) = −
n∑
i=1

mi∑
j=1

2∆ij
∂∆ij

∂γ
+Dλ

= −2
n∑
i=1

mi∑
j=1

[∂ log lijj
∂γ

∆2
ij + ∆ij

j−1∑
k=1

uijk∆ik

]
+Dλ

(4.19)

With
∂∆ij

∂γ
= −∂ log lijj

∂γ
∆ij −

∑j−1
k=1 uijk∆ik,

I33 = −
n∑
i=1

mi∑
j=1

E
(∂2 log lijj
∂γ∂γ ′

+ ∆ij
∂2∆ij

∂γ∂γ ′
+
∂∆ij

∂γ

∂∆ij

∂γ ′

)
=

n∑
i=1

mi∑
j=1

(
4
∂ log lijj
∂γ

∂ log lijj
∂γ ′

+

j−1∑
k=1

uijku
′
ijk

) (4.20)

By Equation (4.5),

∂lijk
∂γ

=


lijk
∑k−1

l=1 Wijl/ tanφijl, k = j;

−lijkwijk tanφijk +
∑k−1

l=1

Wijl

tanφijl
, k < j

. (4.21)

For a fixed λ, an iterative Fisher’s scoring algorithm is as follows:

1. Select initial value α̂(0), β̂
(0)

, and γ̂(0) and set k = 0. The convenient initial values

for α, β, and γ are their LASSO estimates using the balanced data
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2. Update the current β̂
(k)

and γ̂(k) using β̂
(k+1)

γ̂(k+1)

 =

 β̂
(k)

γ̂(k)

+

 I22(θ̂
(k)

) I23(θ̂
(k)

)

I32(θ̂
(k)

) I33(θ̂
(k)

)

−1 S2(θ̂
(k)

)

S3(θ̂
(k)

)


3. Calculate Σ̂

(k)
based on Equation (4.5)

4. Update the current α̂(k) using

α̂(k+1) = α̂(k) + I11(θ̂)−1S1(θ̂
(k)

)

5. Repeat steps 2-4 until the difference between PL(θ̂
(k+1)

) and PL(θ̂
(k)

) is no greater

than ε

The initial values of parameters, α̂(0), β̂(0) and γ̂(0), determine the computation efficiency

of a Newton-Raphson algorithm. A randomly given initial value could significantly slow

the search of the “optimal” result. Inspired by the decomposition of mean, variance, and

correlation, this research estimates α, β and γ independently. That is, mean, variance, and

angle functions are assumed to be independent from one another and their parameters are

estimated separately.

4.3 Prediction and time to failure evaluation

Assume a prediction y∗ at a new input t∗. The degradation process can be evaluated

at y∗ = µ(t∗) + S(t∗) where µ(t∗) is given based on the degradation trend and S(t∗) is

the covariance of the input t∗. It is reasonable to assume that y∗ ∼ N(µ∗,Σ∗). For a joint

distribution, the simple kriging predictor is a good choice for unbiased linear predictors.

Assuming X and Y are two random variables with their Gaussian joint distribution of X

Y

 ∼MVN

( µX

µY

 ,

 CXX CXY

CY X CY Y

)

then,

Y |X ∼ N(µY + CY XC
−1
XX(X − µX), CY Y − CY XΣ−1XXΣXY ). (4.22)
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For a degradation process, the joint distribution of S = (s1(T ), s2(T ), . . . , sM(T ))′ and

the prediction S∗ = (s∗(t)) can be written as S

S∗

 = N

(
0,

 C(T, T ) C(T, t∗)

C(t∗, T ) C(t∗, t∗)

) (4.23)

where C(T, t∗) is the covariance matrix between the model output ŷ and y∗, C(T, T ) and

C(t∗, t∗) are the covariance of y and y∗, respectively. The conditional distribution of S∗

given S is

S∗|S ∼ N(C(t∗, T )C(T, T )−1S,C(t∗, t∗)− C(t∗, T )C(T, T )−1C(T, t∗)) (4.24)

Therefore, prediction y∗ has the mean and variance

E(y∗) = µ(t∗) +H(y − µ(t))

σ∗ = C(t∗, t∗)−HC(T, T )−1H ′,
(4.25)

where H = C(t∗, T )C(T, T )−1.

With the assumption of independence of multiple objects, the aforementioned predic-

tion can be repeated N times, where E(y(m)∗) and V ar(y∗(m)) can be obtained. The case

of unbalanced data can be well addressed because the conditional distribution of predic-

tions given the measurements of objects are estimated independently. Based on the above

E(y(m)∗) and V ar(y∗(m)), the prediction for the response associated with a input t∗ is given

as

ŷ∗ =

∑N
n=1 ŷ

∗
(n)

N

y∗(n) = µ(t∗) +H(n)(yn − µn(t))

σ∗2 =

∑N
n=1 σ̂

2
(n)

N
+ (

N∑
n=1

ŷ∗2(n)/N − ŷ∗2).

(4.26)

For every cycle or time point, a Gaussian distribution of the degradation state can be re-

tained based on the observed data Y . The probability that the capacity at cycle t is less

or equal to the threshold values, i.e., Pr(y∗ ≤ DT ), can be obtained, based on which the

distribution can be estimated (see Figure 4.2).
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Figure 4.2: Prediction of degradation and cycle to failure estimation procedure

4.4 A joint modeling method for Lithium Ion battery capacity fade modeling and

prognostics

This section presents the cycling test and the result analysis using the proposed joint

modeling method. The MCD method and joint modeling method are presented. Validation

of the proposed method is implemented through the battery capacity fading prognostics.

4.4.1 Experimental result

This section presents the cycling test and the result analysis using the proposed method.

Four LiCoO2 Lithium Ion batteries, whose rated capacities are 1.1 Ah, are tested in the

room temperature under constant-current-constant-voltage (CCCV) charge/discharge pro-

file. The profile is as follows: charge the battery at current 1C until the voltage reaches 4.2

V; continue to charge with the constant voltage of 4.2 V until the current decreases to 0.05

mA; and then discharge at current 1C until the voltage decreases to 2.5V. Table 4.1 and

Figure 4.3 summarize the experimental results where the total number of cycles and cycle

to failure are recorded.

4.4.2 Covariate selection in battery capacity fading

To improve the interpretation of prognostics model and its prediction performance, co-

variates in JMM are selected based on the physical understanding of the degradation pro-

cess of the capacity fading.
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Table 4.1: Summary of experiment data

Sample Discharge rate Number of cycles Cycle to failure (80%)

CS2 35 1C 930 645

CS2 36 1C 970 549

CS2 37 1C 1036 625

CS2 38 1C 1050 672
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Figure 4.3: The capacity fade of tested batteries over cycles

The selection of functions and their covariates in the joint model mainly depends on the

physical understanding of the degradation process. In Equation (4.6),X i are the covariates

that are used to model the mean of the measurements. The selection of X i might mainly

depend on the analytic model of the degradation process, i.e., the physics of failure model.

For example, in the battery capacity degradation, it is a natural idea that the covariates can

be selected from the factors affecting SEI formation during the electro-chemical reaction,

such as the number of cycles, state of charge (SOC), depth of discharge (DOD), charge

rate and discharge rate, temperature, etc. These factors are also good candidates of Zi, the

covariates of the logarithm square variance of the jth observations. The correlation between
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measurements yi and yj decay over the time difference between the measurements. Thus

W ijk should include time varying covariates that may depend on measurement time tik and

tij as it is capturing the correlation between the responses at these two measurement times.

The mean functions µi, i = 1, · · · , n, are to describe the deterministic degradation

process based on the physical understandings of the degradation process. For the battery

capacity degradation, it is a natural idea to select the number of cycles. These factors are

also good candidates of Zi, the covariates of the log-variance of observations of the the

ith subject. The correlation between measurements yik and yij decays over the time lag

between the measurements. Thus Wijk should include time-varying covariates that depend

on time tik and tij , which can captures the correlation between the capacity at these two

cycles.

4.4.3 Modeling the mean, log-variance, and correlation of capacity fading

This section aims to identify the basic forms of functions of the mean, log-variance,

and angles and determine their unknown parameters.

4.4.3.1 Mean function

The baic form of the mean function is determined by the capacity degradation mecha-

nism. The chemical degradation mechanism has been widely recognized as a major cause

of loss of active lithium ions, especially the SEI formation. The capacity fade analysis

models based on chemical degradation mechanism attract interest. The basic form of func-

tions in the proposed mean function incorporates the chemical degradation model in [142],

where the four scenarios of active lithium ions loss are combined: SEI formation at the first

cycle, SEI thickness growth on initial surface, SEI formation due to crack propagation, and

SEI thickness growth on cracked surface,

Q̂ = 1 +
2−m
C

BAL0

[
(1− CN)2/(2−m) − (1− C)2/(2−m)

]
(4.27)
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where Q̂ represents the fraction capacity andN is the number of cycles. B,A, L0,m, C are

constant parameters determined by the material of batteries. It can be concluded that the

value of m determines covariates of the mean function. It is reasonable to rewrite Equation

(4.27) into the pth order polynomial function of the number of cycles, see Equation (4.28).

µi = X iα =



1 xi1 x2i1 · · · xpi1

1 xi2 x2i2 · · · xpi2

1 xi3 x2i3 · · · xpi3
...

...
... . . . ...

1 xini
x2ini

· · · xpini





α0

α1

α2

...

αp


(4.28)

where µi is the mean capacity of the ith unit, αi, i = 0, 1, 2, . . . , p are the coefficients of

the polynomial terms, and xij, j = 1, . . . , p are the number of measured cycles of the ith

unit.

4.4.3.2 Log-variance and angle function

Given the assumption of ni = n and Ei = σ2I , the covariance matrix Σi of each unit

can be written as Σ = ZΣbZ
T + σ2I . Similarly, the first 930 measurements are used to

find the basic functions of the log-variance and angles. A correlation matrix based on the

historical data is sometimes non-positive definite due to missing data, noises and linearity

of components. A “broken” correlation matrix with some negative eigenvalues with very

small absolute values can be fixed. This research uses a simulation-based method to cre-

ate a positive define matrix out of a broken correlation matrix, where the small negative

eigenvalues are replaced by a normal distribution with the mean of 0 and small variance.

The simulated covariance matrix is consistent of the orignal matrix [170]. Given Equation

(4.5) and the simulated covariance matrix, the logarithm variance and angles φijk can be

obtained.

For the log-variance function, the number of cycles is also a natural choice. The angle

function has a unique relationship with the entities of the correlation matrix. Thus the cycle-

lag – the time difference between measurements– is selected as the covariate of the angle
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function. Statistical tests are implemented to demonstrate the statistical significance of the

selected covariate to the log-variance and angle function for correlations. It is difficult

to detect equality of variance since only one observation for the log-variance is available.

To investigate the variance of the log-variance over cycles, the bootstrapping method is

employed to generate samples. The bootstrapping samples of any three batteries capacity

observations are randomly sampled from four batteries, and log-variances of three capacity

observations at each cycle are calculated. The ANOVA assumptions of homoscedasticity

and residual normality in the log-variance are checked. It can be concluded that these two

assumptions are violated with significant p-values (see Table 4.2). In addition, sample sizes

Table 4.2: Assumptions of equality of variance and residual normality for the log-variance

Test of equality of variance- Studentized Breusch-Pagan test

BP value 325.52

Degrees of free 1

p-value < 2.2e− 16

Test of residual normality - Shapiro-Wilk normality test

W value 0.85919

p-value < 2.2e− 16

of the angle functions over cycles are unbalanced which leads to the one-way AVONA test

being too sensitive to inequality of variances and becoming non-applicable. Therefore, the

nonparametric test of Friedman test is employed considering its robustness in dealing with

non-normality, heterscedasticity, and outliers. The null hypothesis of the Friedman test

is that there are no differences between the predictive variables. If p-value is significant,

it can be concluded that at least 2 of the variables are significantly different from each

other. The results of Friedman tests over log-variance and angle functions for correlations

are shown in Table 4.3, where p-values for both log-variance and angles are significant.

We can reject the null hypothesis of tests for both log-variances and angles. It can be

concluded that the number of cycles is statistically significant to log-variance and cycle lags

68



are statistically significant to angles. Due to the lack of analytic models for log-variance

and angles, this research uses data-driven methods to explore the basic functional forms

with balanced repeated measurements. It turns out that polynomials can also be used to

model log-variance and angles (see red lines in Figure 4.4 and 4.5).

Table 4.3: Friedman test for covariate significance of log-variance and angles for correla-

tions

log-variance

Chi-squared value 626.53

Degrees of freedom 3

p-value < 2.2e− 16

Angle functions for correlations

Chi-squared value 28570

Degrees of freedom 928

p-value < 2.2e− 16
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Figure 4.4: Log-variance over cycles
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Figure 4.5: The angle mode versus the cycle lag

4.4.4 A mean-covariance decomposition modeling method for battery capacity prog-

nostics

As mentioned in Chapter 3, the initial parameters in the mean-variance-angles are very

important for the convergence of the Newton-Raphson algorithm. Inspired by the mean

and covariance decomposition, the mean, log-variance, and angle function in Equation

(4.6) are modeled independently in this section. Due to the high dimension covariance

matrix, the concept of the moving window is also used. The optimal moving window is

determined through the same method in Section 4.2. This research fits the mean, log-

variance, and angle function through non-parametric methods under the optimal moving

window. Using the estimated mean and covariance, the multivariate distribution of the

capacity over cycles can be used to illustrate the degradation process of the capacity. Given

the failure threshold of the capacity, the distribution of the cycle to time can be obtained

through sample numerical simulations.
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4.4.4.1 Modeling the mean function

As discussed in Section 4.4.2, the mean function of the capacity degradation process can

be written as function of cycles. To enable this model to analyze various types of lithium

ion batteries, Equation (4.27) is simplified into a general form. Based on the empirical

values of m and C in [171], it is reasonable to rewrite Equation (4.27) into the third order

polynomial function of the number of cycles, see Equation (4.29).

Q(N) = anN
2/(2−m) + an−1N

2/(2−m)−1 + · · ·+ a1N + a0;

Q(N) = a3N
3 + a2N

2 + a1N + a0;
(4.29)

where Q(N) is the battery capacity at cycle N , ai, i = 3, 2, 1, are the coefficients of the

polynomial terms and a0 represents the constant. The parameters can be determined by

balancing the residuals and test errors. The training data and test data in this research is 80%

and 20%. Equation (4.30) presents the estimated mean function. Another commonly used

physics failure model two-term exponential function [143], i.e. a·exp(b·N)+a·exp(d·N),

is also used. But the proposed polynomial model has smaller RSME of 0.0147 than the two-

term exponential function of 0.0914. Figure 4.6 illustrate the polynomial predictive model,

two-term exponential model and average capacity over the batteries.

µ = 1.109− 7.679× 10−4N + 1.947× 10−6N2

− 2.171× 10−9N3.
(4.30)

4.4.4.2 Modeling log-variance and correlation

The concept of moving window is used for variance and correlation modeling due to

the high dimension of the covariance in this case. Based on the same procedure mentioned

in Chapter 3, the optimal size of moving-window is 46 with the minimum mean absolute

deviation (MAD), 1.215e − 06. Compared with the optimal length of 195 in the linear

mixed effects model, less historical information is used for prediction (see Figure 4.7).

Since there is no analytic model for the variance and angle function, non-parametric

learning algorithms are used to model the logarithm variance and angles. The concept
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Figure 4.6: Comparison of the polynomial and two-term exponential predictive models
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Figure 4.7: The optimal moving window

of SVM is applied to model the logarithm variance, whose core is to train support vec-

tor machines so that the data points lie in between the two borders of the margin, which

is maximized under suitable conditions to avoid outliers inclusion. For the angles which
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indicate the correlations of longitudinal measurements, there would be large, densely sam-

pled data. Due to the lack of theoretical understanding, non-parametric regression methods

are natural choices. Within a moving window, the fitted curve based on SVM is obtained

where the predictions of future values yield. Figure 4.8 shows one example of data points

of logarithm variance, and the predicted curve and Figure 4.9 shows an example of the an-

gles versus cycle lag and the fitted curve based on SVM regression. Obviously the moving

window significantly reduce the computation complexity.
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Figure 4.8: The actual and predicted log-variance

4.4.4.3 Performance prediction using mean-covariance decomposition method

To have a better understanding of the cycle to failure estimation, the mean-covariance

decomposition model with the optimal moving window length of 46 is used to predict the

capacity around the last 100 cycles. Given the end life cycles, the data of the first 540

cycles are used to predict the cycle to failure at which the capacity of batteries are less or

equal to 80% of the initial capacity. The prediction based on the proposed method using

the optimal window is done for the last 15 cycles. That is, the predictions of the capacity
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Figure 4.9: The actual and predicted angles versus the cycle lags

at cycle 541 are made based on the historical capacity data at cycle 495 to 540, and that at

cycle 542 is based on 496 to 541, and so on. The prediction of future values is provided

in the form of a multivariate normal distribution, where each variate– the prediction of the

capacity– follows a normal distribution. The prediction and the 90% confidence interval

is shown in Figure 4.10. To illustrate the performance of the proposed method, the mixed

effects model suggested in [59] is also used to predict the capacity at cycle 541 to 560.

Since the predicted results are both in the form of statistical distributions. Compared with

the mixed effects model in [59], the width of 90% confidence interval is 0.108, while that of

the mixed effects model is 0.044. The prediction based on mean-covariance decomposition

method has high variation compared with that of the mixed-effect model proposed in [59].

However, the mean function modeling is more accurate in terms of lower RMSE and short

moving window.

A mean-covariance modeling method is proposed to model the longitudinal and between-

sample uncertainties. Through the covariance matrix of the multivariate normal distribu-

tion of the repeated measurement, mean-covariance decomposition can effectively deal

with unbalance data through decomposed covariance matrix and the time-vary random ef-

fects. With the characteristics of the correlation matrix, a trigonometric function is used
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Figure 4.10: Performance comparison of the proposed method and the mixed effects model

to reparameterize the correlation matrix, which can reduce the time-varying factors of the

correlation matrix. To improve the interpretation of the degradation model, the analytic

model from the electrochemical viewpoint is employed as the basic form of the mean func-

tion. For the slow degradation process, the moving-window scheme is used to include the

most recent information for predictions. Within the optimal moving window, the parame-

ters in the mean-covariance models are estimated through balancing the goodness-of-fit of

the capacity data and the model complexity. Compared with the mixed effects model, the

proposed method needs fewer historical data with the moving window with smaller length,

which improves the accuracy of the prediction of the mean function. Consideriing either

the MCD method and the mixed effects model can not easily deal with unbalanced data,

the joint modeling method is used for prognostics using unbalanced data.
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4.4.5 Parameter estimation of joint modeling method

Based on the physics of failure and fitted polynomials of log-variance and angles, the

mean, log-variance, and angle function can be written as

µi = X iα, logσ2
i = Ziβ, φijk = W ijkγ. (4.31)

The highest polynomial orders of µij , log σ2
ij , and φijk functions are specified as 4, 4, and 6,

respectively. Through PMLE, significant covariates can be obtained. The tuning parameter

λ assigned through a grid search in (0, 100) by the step of 0.1. The estimated parameters

α, β, and γ are shown in Equation (4.32) with the tuning parameter λ of 3.9 and BIC of

-112.4.

α =



1.1506

0

0.0045

0.34

0


, β =



−9.59

3.42

0

−0.23

0


, γ =



1.54

0

0.47

0.12

−0.21

0

−0.10


(4.32)

4.4.6 Cycle to failure assessment

Using the estimated mean and covariance function, the distribution of yi ∼MVN(µi,Σi)

can be obtained based on Equation (4.5). Cycle to failure can be assessed through numeri-

cal simulations based on Figure 4.2. Figure 4.11 illustrates the cycle to failure distribution

by setting 0.88 Ah as the threshold of failure. It turns out that cycle to failure normally

distributes with the mean of 634.6 and the standard deviation of 10.2.

4.4.7 Conclusion and discussion

A joint modeling method (JMM) of mean-variance-correlation is proposed to model

Lithium Ion battery capacity fade in this research. The mean, variance, and correlation
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Figure 4.11: Cycle to failure of DF = 0.88Ah

of repeated measurements of capacity are individually explored in JMM, through which

the within and between-subject uncertainties as well as time-varying random effects in the

battery capacity degradation process are effectively modeled. The unstructured correlation

matrix in JMM can easily avoid the negative effects of unbalanced or missing data. Con-

sidering the characteristics of the correlation matrix, the trigonometric function can be used

to reparameterize the correlation matrix, which reduces the complexity of modeling corre-

lations and improves the interpretation of entities of the decomposed matrix. The analytic

model of formation and growth of SEI over cycles are used to provide the basic polynomial

function for the capacity mean in JMM. The basic form of log-variance and angle mode

are estimated through leaning methods. Polynomials are selected for the practical inter-

est. For the purpose of comparison, the mean-covariance decomposition (MCD) method

is also investigated, where parameters of the mean, variance, and angles for correlations

are estimated independently and whose result can be assigned as the initial values of JMM.

Penalized maximum likelihood estimate (PMLE) is used to select covariates and estimate

parameters in the above three functions. Based on the capacity model, cycle to failure can

be obtained through simulations.
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5. OTHER PROGNOSTICS METHODS AND PERFORMANCE
EVALUATION

This chapter introduces two other prognostics methods– prognostics based on the func-

tional principal component analysis (FPCA) and spatio-temporal method, which can be

used to solve challenges using repeated measurement data of multiple units, such as high

dimensionality and dependent units. FPCA is the extension of the conventional princi-

pal component analysis, which can provide more stable estimations and avoid the high-

dimensional covariance matrix. Eigenfunctions of the estimated covariance kernel can be

easily computed and provide insight into the model of variability among the groups of

degradation signals. Through representing each degradation trajectory with a specific com-

bination of eigenfunctions, challenges along with unbalanced data can be well addressed

in FPCA. The assumption of independence among multiple units is impractical in many

cases. More importantly, components/subsystems in complex systems are correlated with

each other during operations. Such correlation is critical to the lifetime of the system. For

example, the capacity degradation behavior of a battery pack with parallel connected cells

depends on the correlation between these cells during cycling usage. Spatio-temporal mod-

els are utilized to model the mentioned correlation between units, which initially aims to

model spatial and temporal trends and uncertainties in geostatistics. In addition, perfor-

mance comparison among proposed methods is implemented in terms of prediction accu-

racy of degradation and time to failure.

5.1 Prognostics based on functional principal component analysis

This research proposes a method based on FPCA, where the mean function and covari-

ance kernel are modeled separately. The mean function can be estimated easily through the

existing learning algorithms, such as support vector machine (SVM). The mean function is
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determined through the local smoothing methods by assuming a deterministic mean func-

tion representing the underlying physics-based degradation mechanisms. Eigenvalues and

eigenfunctions are used to represent the covariance kernel based on the Karhunen-Loéve

decomposition.

5.1.1 Functional data analysis

The term “functional data” refers to data where each observation is a curve, a surface,

or a hypersurface, as opposed to a point or a finite-dimensional vector [172–174]. For ex-

ample, the degradation mechanism analysis of a certain type of electronic part is expected.

The test data collected over time of each sample produces a curve over the time interval.

The smoothness property of the observation data, though observations could be viewed as

discrete, facilitates the functional intepretation [175]. Functional data analysis (FDA) is to

explore the smoothness of data through dealing with the analysis and theory of data that

are in the form of functions, images and shapes, or more general objects. By consider-

ing observations as curves, FDA has advantages in reducing dimension and dealing with

highly correlated data. Moreover, smooth functional representations can allow us to evalu-

ate the trend and fluctuation of degradation processes at any time point, even in the case of

unbalanced data.

Assume the observed data, {(yi1, til), . . . , (yimi
, timi

)}, where yij is the observation

of the ith latent curve Yi at time tij . Yi(t), i = 1, ..., N , are independent realizations

of the stochastic process Y (t) whose mean is µ(t) = E(Y (t)) and covariance function

Σ(s, t) = cov(Y (s), Y (t)). With white noises, yij = Yi(tij)+εij , where εij are usually i.i.d

Gaussian distributions. A commonly adopted approach to interpolate the stochastic process

Yi is through basis expansion. Let {ψ1(·), ψ2(·), . . . , ψK(·)} be a set of basis functions. The

observations yij can be represented as yij =
∑K

k=1 cikψk(tij)+εij , where cik are the subject-

specified scores. Basis functions ψ(t) can be either pre-specified or data-driven. A set of

pre-specified basis functions could be B-spline, wavelets, and Fourier. The choice of basis

functions is based on the data characteristics, e.g. B-splines for Gaussian process data,
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wavelets for signal data, and Fourier series for periodic data. For any curve, the number of

pre-specified basis functions ψ(t) as well as scores cik are the parameters to be determined

through minimizing the sum of squared errors or penalized sum of squared errors. For the

data-driven bases, one convenient choice is the eigenbasis of Y (t). Referring to Karhunen-

Loéve expansion, the related methods is called functional principal component analysis

(FPCA), which is considered as an extension of the principal component analysis (PCA)

[176] in functional data.

5.1.2 Functional principal component analysis

The comprehensive frame of functional principal component analysis (FPCA) was first

developed by Dauxios and Pousse [177]. FPCA becomes the most important tool in FDA

because of its advantages in dimension reduction through facilitating the conversion of

infinite-dimensional functional data into finite-dimension random vectors [174, 178–183].

FPCA provides a data-driven basis, based on which measurements can be represented as

yij = µ(tij)+
∑K

k=1 cikψk(sij)+εi. The unknown set of bases {ψ1(t), ψ2(t), . . .} describes

the main directions of variability in the observation data. Similar with PCA, othonormal

functional principal components are obtained through
ψ1 = argmax

∫
ψ1(t)[Yi(t)− µ(t)]dt, s.t. ‖ φ1(td) ‖2= 1

ψk = argmax
∫
ψk(t)[Yi(t)− µ(t)]dt, s.t.

∫
ψk−1(t)ψk(t)dt = 0,∫

ψk(t)ψk−1(t)dt = 0

(5.1)

where µ(t) = E[Yi(t)] and ψk are the bases.

Let the continuous systematic function Σ(s, t) be the covariance function of Y , such

that

Σ(t, s) = cov(Y (t), Y (s)) = E{[Y (t)− µ(t)][Y (s)− µ(s)]} (5.2)
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Σ(t, s) includes the kernel operator Σ defined by Σψ(t) =
∫

Σ(t, s)ψ(s)ds. According to

the Mercer’s theorem, there is an orthonormal basis function ψk and non-increasing positive

value λk, i.e., λ1 ≥ λ2 ≥ λk ≥ . . . > 0 such that

Σψk =

∫
Σ(t, s)ψk(s)ds = λkψk

and,Σ(t, s) =
∞∑
k=1

λkψk(t)ψk(s).
(5.3)

Under the assumption of Mercer’s theorem, the stochastic process can be expressed as

Y (t) = µ(t) +
∞∑
k=1

√
λkξkψk(t), (5.4)

where ξk =
1√
λk

∫
Y (t)ψk(t)dt is a random variable with mean E(ξk) = 0 and variance

E(ξjξk) = δjk– the Kronecker delta. According to the Mercer’s theorem, Equation (5.4)

converges uniformly, i.e., E[Y (t)− µ(t)−
∑K

k=1

√
λkξkψk(t)]

2 → 0. Therefore,

Yi(t) = µ(t) +
K∑
k=1

√
λkξikψk(t) + εi, (5.5)

which is named as Karhunen-Loève expansion that illustrates that Yi(t) is projecting into a

K-dimension space. The idea of FPCA is to use the first K terms of KL expansion as an

approximation of Y (t).

5.1.3 Degradation modeling based on functional data analysis

Based on Equation (4.1), the degradation trajectory of the ith unit can be rewritten as

Yi(t) = µ(t) + Si(t) + εi(t), (5.6)

where µ(t) is the mean of the degradation trend, Si is the stochastic process from the

underlying degradation mechanism, and εi is the noise. For a degradation process, the

mean function can be assumed to be a deterministic model. Physical understanding of the

degradation process provides the basic knowledge of this deterministic model, such as the

function form of the model, covariates, and so on.
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5.1.3.1 Mean function µ(t)

For a degradation process, the mean function µ(t) can be assumed to be a deterministic

model. Physical understanding of the degradation process provides the basic knowledge of

this deterministic model, such as the functional form of the model, covariates, and so on.

Take lithium ion battery degradation for instance, where the formation, growth, and repair

of SEI cause most loss of the active lithium ions. Factors, such as cycles, temperature,

state of charge, depth of discharge, and charge/discharge rate are other common covariates.

Many parametric and nonparametric methods can be used to model the mean function,

such as general regression methods, functional regression and other data-driven algorithms.

Based on the discussion in Chapter 4, the mean function is modeled through SVM.

5.1.3.2 Stochastic process Si(t)

The stochastic process Si = Yi−µ has mean zero and covariance kernel. The covariance

kernel Σi(t, s) can be decomposed as Equation (5.7) according to the Karhunen-Lovéve

decomposition.

cov(t, t′) =
∞∑
k=1

λkψk(t)ψk(t
′), (5.7)

where t, t′ ∈ {tij}j=1,...,mi
. ψk(t), k = 1, . . . are the eigenfunction and λ1 ≥ λ2 ≥ λ3 ≥ · · ·

are the ordered eigenvalues. Based on this decomposition, Si can be rewritten as

Si =
∞∑
k=1

ξikψk(t), (5.8)

where ξik are the scores that describes the uncorrelated random effects with mean zero and

variance λk. Since only a small number of eigenvalues are significantly nonzero, finite are

nonzero. Therefore, Equation (5.8) can be approximated as

Si(t) =
K∑
k=1

ξikψk(t), (5.9)

where K is the number of significant nonzero eigenvalues. The eigenfunction ψk(t) can

be represented as a linear combination of basis functions, i.e., ψk(t) =
∑M

m=1 bkmφm(t)
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where φm(t),m = 1, . . . ,M are known bases, such as Bsplines [184, 185]. Then for every

t,

ψ(t) = (ψ1(t), . . . , ψK(t))T ,

= BT (φ1(t), . . . , φM(t))T ,
(5.10)

where B is a M ×K matrix with the factor bmk and BTB = I .

5.1.3.3 Parameter estimation and time to failure evaluation

Similarly to the joint modeling method, maximum likelihood estimation is used to es-

timate the parameters, B, Λ, and σ2. The negative log-likelihood of Si(t) = Yi − µ is

− log(B,Λ, σ2) =
1

2

n∑
i=1

tr[(σ2Imi
+ ΦT

i BΛBTΦi)
−1STi Si]

+
1

2

n∑
i=1

log |σ2Imi
+ ΦT

i BΛBTΦi|.
(5.11)

Peng et al. [186] proposed a geometric approach to solve this optimization problem, where

B, Λ, and σ2 are considered as the vectors in the Stiefel manifold and two-step procedure

of Newton-Raphson algorithm is applied to estimate the parameter. More comprehensive

details of the algorithm can be found in Peng’s work. With B,Λ, σ2, we can obtain a

complete degradation model which describes the variability from within-unit and between-

unit. Therefore, cycle to failure can be obtained based on the simulation.

5.1.4 Prognostics of Lithium Ion battery using functional principal component anal-

ysis

Functional principal component analysis can be used for battery capacity prognos-

tics. The observed degradation signal is decomposed into the mean function and variance-

covariance function. Functional principal components of the variance-covariance function

are represented and modeled through eigenfunctions, which are further approximated and

estimated using a combination of B-Splines. For the battery capacity prognostics, three
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eigenfunctions explained 99.98% of the total variation. Capacity prediction and cycle to

failure distribution are also analyzed and evaluated based on the proposed method.

As discussed in Chapter 4, support vector regression is used to estimate the mean func-

tion, which provides a parsimonious algorithm with the certain level of accuracy. The mean

absolute deviation (MAD) using SVM of 0.008 is less than that using location quadratic

smoothing as 0.012. Three eigenvalues are included λ = (2.497, 0.056, 0.005). The er-

ror variance σ2 is 0.0007 with 6 cubic splines are included. Over 99% of total variation

is modeled using the first three principal components. Using the estimated mean function

and covariance kernel, the capacity can be predicted based on the simple kriging shown in

Equation (4.22) (see Figure 5.1). Figure 5.3 and 5.4 shows the cycle to failure distribution

by setting 0.88 Ah as the threshold. It turns out that the mean of the cycle to failure is 635

and the standard deviation is 15.3.

0 200 400 600 800

−0
.1

0
−0

.0
5

0.
00

0.
05

Cycles

Ei
ge

nf
un

ct
io

ns

eigenfunction 1
eigenfunction 2
eigenfunction 3

Figure 5.1: The first three eigenfunctions over cycles

5.2 Prognostics based on general spatio-temporal model

All aforementioned methods investigate the degradation model of the ith unit with the

observations yi, i = 1, . . . , n. Given the assumption that these units are independent from

each other, maximum likelihood estimation (MLE) is used to estimated the fixed and ran-

dom effects coefficients. But no such model that includes unit-specific variation, temporal
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Figure 5.2: The comparison of location quadratic smoothing and SVM
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Figure 5.3: The simulated capacity degradation process based on the proposed method

variation, and unit-temporal variation has been studied for the repeated measurement data

of multiple units. This research proposes a general spatio-temporal model to investigate

these variations.

5.2.1 General spatio-temporal model

Initially spatio-temporal models arise when data is collected across time as well as

space [187]. A typical example would be that of a monitoring network of an atmospheric
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Figure 5.4: Cycle to failure estimation and the observed average cycle to failure

pollutant, or a network of meteorological stations on which data are collected at regular

intervals. Thus the data analysis has to take account of spatial dependence among the

monitors, but also that the observations at each monitor typically are not independent, but

form a time series. Temporal correlations and spatial correlations are taken into account in

this model. Wikle et al. [188] summarized the general spatio-temporal model as

Y (s, t) = µ(s; θt) + γ(t; θs) + κ(s; t; θs,t) + ε(s; t), (5.12)

where Y (s, t) denotes a spatio-temporal random process. s and t are the spatial and tempo-

ral factors, respectively. µ(s; θs) is the spatial trend function which can be used to describe

the difference between multiple units and θt is the spatial trend function parameter that

change over the temporal factor t. γ(t; θs) is the temporal trend with the spatially vary-

ing parameter θs. γ(t; θs) can be used to illustrate the degradation process of each unit.

κ(s; t; θs,t) describes the spatio-temporal dependency. εs,t represents the error over (s, t).

κ(s; t; θs,t) is the spatio-temporal dependence. Y (s, t) performs as a spatio-temporal pro-

cess which can be evaluated by its mean and the associated covariance function. Without

losing generality, we can let EY (s; t) = Z(s; t) = µ(s; θt) + γ(t; θs) + κ(s; t; θs,t). There-

fore,

Y (s; t) = Z(s; t) + εs;t, (5.13)
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where Z(s; t) can be modeled based on the physical understanding or empirical data. Usu-

ally the case with continuous spatial and discrete time is investigated. For example, Brown

et al. [189] and Liu et al. [190] provided comprehensive discussions of the statistical mod-

eling of spatio-degradation data, where the spatio-temporal degradation process Y (s; t) is

obtained by smoothing Y (s; t − ∆), ∀∆ ≥ 0 with the spatial trend and a stochastic prop-

agation process. To extend the application of spatio-temporal methods, the requirement

of continuous spatial variables is less demanding. For example, the capacity degradation

of a battery pack is the degradation propagation of cells which distribute spatially in the

pack. In the case of discrete spatial variables, Z(s; t) can be easily obtained. The covari-

ance of Y (s; t) is often assumed to be stationary. That is, the covariance of Y (s, t) and

Y (s + h, t + u) is given as C(h, u) = cov(Y (s, t),Y (s + h, t + u)). Though investiga-

tions of non-stationary covariance have been done, methods are still mainly based on the

stationary covariance. For example, Sigrist et al. [191,192] have tried to add Markov chain

and auto-regression coefficient into stationary covariance function for the non-stationary

saptio-temporal process. Hefley et al. [193] introduced random effects into spatial covari-

ance.

This research aims to extend the spatio-temporal model in prognostics modeling with

repeated measurement data of multiple units to quantify the correlation between units.

Multiple families of stationary covariances and variogram estimators are discussed. The

capacity degradation of battery packs is used to validate the proposed method, where the

correlation of cells during usage cycling is investigated. To estimate cycle to failure, the

prediction based on the spatio-temporal model can be easily done through the simple krig-

ing predictor.

5.2.2 Model selection and parameter

Z(s; t) represents the mean of the degradation process over space and time. A general

linear model Z = Xα can used to model Z(s; t). As mentioned in Chapters 3 and 4,

physical understanding can provide covariance, basic function form, etc. For a spatio-
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temporal stochastic process Y (s; t), spatio-dependency is usually chararicterized by the

covariance function, cov(Y (s1; t2), Y (s2; t2)) = C(s1, s2; t1, t2). A stationary covariance

is defined by the fact that the covariance depends on only the location distance and time

difference, which is C(h, u) = C(Y (s + h; t + u), Y (s; t)). The separable covariance

composed of the pure spatial and temporal covariances is a natural idea to construct the

covariance matrix of Y (s; t). However, separable covariance often fails to model the space-

time interaction. Cressie et al. [194] proved that continuous spatio-temporal stationary

covariance function can be written as the product of two parts based on Bochner’s theorem.

This is

C(h, u) =

∫ ∫
εih
′w+iuδg(w; δ)dwdδ

g(w; δ) = (2π)−1
∫

exp(−iuδ)h(w;u)du

h(w;u) =

∫
g(w; δ)dδ.

(5.14)

By simply defining ρ(w, u) =
h(w;u)∫
g(w; δ)dδ

and k(w) =
∫
g(w; δ)dδ, we can obtain

h(w;u) = ρ(w;u)k(w). The covariance function of Y (s; t) can be obtained by specifying

ρ(w;u) and k(w). Seven examples were given in [194, 195], which can be summarized

into the following three major categories with difference spatial margins, such as Gaussian,

Whittle-Matérn function, and exponential, whose generalized forms are shown as follows:

(1) Covariance function with Gaussian related spatial margins:

C(h;u|θ) =
σ2

(a|u|+ 1)d/2
exp(

b2 ‖ h ‖2

a|u|+ 1
) (5.15)

where h ∈ <d, u ∈ <, and θ = (σ2, a, b) is the set of unknown parameters.

(2) Covariance function with Whittle-Matérn function related spatial margins:

C(h;u|θ) =


σ2(2cd/2)

(a2u2 + 1)v(a2u2 + c)d/2Γ(v)

[ b
2

(a2u2 + 1

a2u2 + c

)1/2
‖ h ‖

]v
‖ h ‖6= 0

σ2cd/2

(a2u2 + 1)v(a2u2 + c)d/2
‖ h ‖= 0

(5.16)
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where h ∈ <d, u ∈ <, and theta = (a, b, c, d, v) is the set of unknown parameter.

(3) Covariance function with exponential related spatial margins:

C(h;u|θ) =
σ2(a|u|+ 1)

[(a|u|+ 1)2 + b2 ‖ h ‖2]d+1/2
(5.17)

where h ∈ <d, u ∈ <, and θ = (a, b).

The selection of the covariance function of a spatio-temporal process is usually based

on the the characteristics of variogram, such as trend and concaveness. Variogram depicts

the spatial auto-correlation of the measured sample points. The variogram 2γ(h;u|θ) =

var(Y (s + h; t + u), Y (s, h)). For a stationary covariance function, var(Y (s + h; t +

u), Y (s, h)) = C(0; 0|θ)− C(h;u|θ). Then the variogram can be calculated via

2γ(h;u|θ) = C(0; 0|θ)− C(h;u|θ). (5.18)

For a spatio-temporal process, the empirical variogram estimator is needed because sample

information of Y (s; t) is not available for every location. The commonly used empirical

variogram is originally defined by Matheron [196], which is the average squared difference

between measurements separated by distance h and time u. That is,

2γ̂ =
1

|N(h;u)|
∑
i,j,t,t′

(Y (si; t)− Y (sj; t
′))2, (5.19)

where N(h;u) is the set of all pairwise distances si − sj = h and t− t′ = u, and |N(h;u)

is the number of distinct pairs in N(h;u). Because this classic estimator is not effective

in the case of the existence of outliers, this research applies robust estimators mentioned

in [197] to estimate parameters from spatio-temporal measurements.

Parameters θ in the covariance function can be estimated by fitting 2γ̂ to the variogram

calculated in Equation (5.18). Regression methods, such as least-square methods and maxi-

mum likelihood methods, can be used. Cressie [198–200] proposed weighted-least-squares

methods, where the parameter θ is estimated by minimizing weights in Equation (5.20),

which is solved through the gradient decent method in this research.

W (θ) =
H∑
h=1

U∑
u=0

|N(s; t)|
( ˆγ(h;u)

γ(h;u)
− 1
)2
. (5.20)
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5.2.3 Prognostics modeling battery pack capacity

A battery pack is composed of cells that are managed through battery management

system. In the battery pack, the battery management system balances all the cells in the

battery pack by intelligently bleeding off excess energy from cells that are charged more

than others. This provides the maximum amount of usable energy (capacity) from the

battery pack since the pack is only as strong as the weakest cell. The “spatial” distance

of cells can be expressed by the way in which they are connected. The spatio-temporal

model is used to model the capacity degradation with the focus of cell correlation during

the charge and discharge process. Because of lack of measurements of capacity of cells

and unclear correlation between cells, the sample entropy method is used to approximate

the capacity change over cycles. The capacity values at the end of each operation cycle

are usually recorded so that the state of health can be estimated. The open circuit voltage

and current change over time in one operation cycle and vary from the charge/discharge

profile as well as the number of cycles. For example, in typical constant-current-constant

voltage (CCCV) charge/discharge profile, the voltage of the test battery increases first, then

stays steady, and eventually drops. Moreover, the curves of the voltage profile vary from

the cycles. For the same battery, the voltages curves of each cycle are different from each

other. Based on the sample entropy algorithm, there exists a certain sample entropy value

and a test capacity value for each cycle. With predicted capacity of each cells, the spatio-

temporal model can be used to estimate the mean and covariance function of cells in the

tested pack. Prediction of capacity degradation of cells can be easily obtained based on the

simple kriging. Figure 5.5 illustrates the scheme of the proposed prognostics model based

on the spatio-temporal model.

5.2.3.1 Experiment design

Two paralleled connected LiCoO2-graphite batteries, shown in Figure 5.6, with the

rated capacity 3.4 Ah and rated voltage 4.2 V are tested at the room temperature under

constant-current-constant-voltage (CCCV) charge/discharge profile. The cycling test was
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Figure 5.5: Scheme of prognostics based on the spatio-temporal model

conducted under the following parameters settings: 1) the constant current charge rate is

0.5C, 2) the cutoff voltage is 4.2 V, 3) The voltage is 4.2 for the constant voltage charge,

4) the discharge rate is 0.5C, and 5) the discharge cutoff voltage is 2.5V. Typical voltage

and current during a charge/discharge cycle is shown in Figure 5.7. Figure 5.8 summarizes

the experimental results where the observations of the tested battery pack over 125 cycles

were recorded. Meanwhile, current and voltage changes of each cell in this pack are also

monitored.

5.2.3.2 Estimation of capacity using the sample entropy-based method

Entropy is defined as the average amount of information contained in each message

received. Approximate entropy (ApEn) and sample entropy (SamEn) are mathematical

algorithms created to measure the repeatability or predictability within a time series. It is

proven that SamEn is more accurate when the data length varies. For aN points time-series,

Xm
i = {s(i), s(i+1), . . . , s(i+m−1)} can be obtained, wherem is the run length. Then the

distance dmij between the vectorXm
i andXm

j is defined as dmij = max|s(i+k)−s(j+k)|. The
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Figure 5.7: The voltage and current profile in a CCCV charge/discharge cycle

similarity degree Dm
ij between Xm

i and Xm
j is determined by a fuzzy membership function.

That is, Dm
ij = fz(d

m
ij , r) where fz(·) is the fuzzy membership function. Gaussian, Sigmoid

and logistic functions are common choices of fuzzy functions. The Sigmoid function,

fz(d
m
ij , r) =

1

1 + exp((dmij + 0.5)/r)
is used in this research, dmij is the distance between

Xm
i and Xm

j , and r is a tolerance window. For each vector Xm
i , averaging all the similarity

degree of its neighboring vectors Xm
j , Cm

r (i) = 1/(N −m− 1)
∑

( j = 1, i 6= j)(N−m)Dm
ij
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Figure 5.8: The capacity fade of tested battery pack over cycles

can be obtained and the cumulative probability Cm
r = 1/(N −m)

∑
( i = 1)(N−m)[Cm

r (i)].

Define C(m+1)
r with the same logic of Cm

r . Then the sample entropy can be calculated as

follows:

SampEn(r,m,N) = − log[(C(m+1)
r )/(Cm

r )], (5.21)

where r, m, and N are the tolerance window, the run length, and the total number of data

points, respectively.

The sample entropy is not new in the lithium ion capacity assessment. There are sev-

eral works applying sample entropy in assessing capacity, but the discussion over dynamic

charge/discharge profile is missing. Moreover, the voltage time series is the only input

of the SampEn calculation. For example, Sun et al. [127] analyzed the lead-acid battery

state of health under the fully charge/discharge condition. Widodo, et al. [128] used sam-

ple entropy to analyze the capacity degradation mechanism where batteries are full charge

and discharged. Hu et al. [201] fitted the regression model between the capacity and sam-

ple entropy of lithium ion batteries under various ambient temperatures. Considering the

characteristics of voltage and current in a parallel connected battery pack, this research

investigates the SampEn based on both voltage and current, and quantify the relationship
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between the SampEn and capacity degradation. Figure 5.9 shows the SampEn over cycles.

The general capacity SampEn-based estimator is proposed as follows,

Y = f(SampEnv,SampEnc) + ε, (5.22)

where SampEnv and SampEnc are the sample entropy based on voltage and current, respec-

tively. f(·) is the function that represents the relationship of SampEn values and capacity.

Without losing generality, polynomials function is selected f(·) in this research. Guo et

al. [202] provided a Y = 1.9899−0.2594SampEnv−0.0012SampEn2
v+0.3112SampEnc

based on the data single cells provided by NASA [22], which is used to predict the capacity

in the battery pack.
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Figure 5.9: The sample entropy of cells in the tested battery pack
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5.2.3.3 Prognostics of battery pack using the spatio-temporal model

The generalized robust variogram estimator, proposed by Cressie and Hawkins [203],

γ̂(h;u) =
[N(s; t)

∑
N(s;t) |Y (si; t)− Y (sj; t

′)|1/2]4

0.457 + 0.494/|N(s; t)|+ 0.045/|N(s; t)|2
, is used considering the existence

of outliers. The covariance function with Gaussian spatial margins is selected. For d = 2,

with the covariance function of Equation (5.15) and (5.18), the variogram can be defined

as

γ(h;u|θ) =


0 ‖ h ‖= u = 0;

σ2
[
1− 1

a|u|+ 1
exp

(b2 ‖ h ‖2
a|u|+ 1

)]
+ r2 + α1 ‖ h ‖α2 otherwise

,

(5.23)

where θ = (a, b, σ2, r) is the set of unknown parameters. Since there are two cells in the

pack, ‖ h ‖ is considered as 1 for the purpose of simplicity. By minimizing Equation (5.20),

the covariance matrix parameter θ is (0.2, 0.003, 0, 0, 4, 0.05). The covariance of the two

cells decreases over various time intervals (see Figure 5.10).
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Figure 5.10: Covariance of two cells over the time with the spatial lag of 1
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5.2.3.4 Conclusion and discussion

The spatio-temporal model is used to capture the spatial correlation and temporal uncer-

tainties. The correlation of cells in a battery pack is considered as the function of “spatial”

variables. A pack of two-parallel cells is used to validate the proposed method. Stationary

covariance function with Gaussian related margins is employed, whose parameters are es-

timated based on the robust empirical variogram. Due to the complex correlation between

cells and lack of direction measurements of capacity, the sample entropy-based estimator

is used to approximate the capacity of each cell. With the approximated capacity of cells,

the covariance function of two cells is estimated through the weighed least square method.

Assuming the spatial distance of two-parallel connected cells as 1, the covariance func-

tion of cells shows that correlation of two cells decreases with large temporal intervals. In

the future, prognostics based on spatio-temporal model for more complex systems will be

investigated. Considering dynamic models and processes are encountered in many case,

non-stationary covariance function will be investigated, which can the represent time-vary

decay rate of the degradation process.

5.3 Performance evaluation

The above-proposed methods as well as those in Chapters 3 and 4 are proposed to

solve various challenges in prognostics modeling using repeated measurements of multi-

ple units. The relationship between the proposed method is shown in Figure 5.11. The

general mixed-effect regression model in Chapter 3 aims to quantify between-unit vari-

ability through random effects, but there are the computational difficulties in the existence

of unbalanced data. Joint modeling method and mean-covariance decomposition method

in Chapter 4 attempts to solve the hamper in prognostics modeling using unbalanced data

by assuming the degradation process as a multivariate normal distribution based on the

general mixed-effect regression model. To process large volumes of data such as dense

observations over time, functional principal component analysis (FPCA)-based regression

is introduced in prognostics modeling, where covariances are modeled as a linear combina-
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tion of eigenfunctions. Compare with other prognostics modeling techniques, the proposed

models aim to model the degradation mechanism and estimate the remaining useful life

(RUL) with the focus of within-between-unit uncertainty quantification. Without the as-

sumption of independence between multiple test units, spatio-temporal models investigate

both “spatial” and temporal trends and uncertainties. Despite the differences in modeling

techniques, those methods above share the goal of modeling the degradation process and

evaluating time to failure. This section serves as a performance comparison of the proposed

methods regarding degradation prediction accuracy and time to failure distribution.

Performance data
+ 

Physical 
understanding

Prognostics model

Degradation process 
modeling

+
RUL prediction

Mixed-effect regression Quantify multiple sources of variability through 
random effects using balanced data

Joint modeling method Tackle the challenges in unbalanced data and 
model variance and correlation as functions of 
time-varying factors.  

Multivariate normal distribution

FPCA
Reduce high dimension by modeling the 
stochastic process as a linear combination of 
principal components. 

Multivariate normal distribution + joint modeling

Spatio-temporal Quantify the dependency of units through the 
“spatial” function

Figure 5.11: Relationship between proposed methdos

Numerical simulation is needed to predict degradation and estimate the time to failure

distribution. The simulation of stochastic processes based on mixed-effect regression mod-

els can be implemented via generating random numbers from the parameter distribution

shown in Equation (3.17). Both joint modeling method and functional principal compo-

nent regression have the same assumption of Gaussian degradation process. The simple

kriging predictor shown in Equation (4.22) can be used for performance prediction. For
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lithium ion battery capacity, degradation prediction and cycle to failure evaluation can be

implemented through

1. Estimate unknown parameters in the proposed methods.

2. Simulate the capacity from the determined models at Step 1

• for mixed-effect regression model: (1) simulate parameter distribution (Equa-

tion (3.17)), (2) calculate the capacity at cycle t based on the parameters gener-

ated above, and (3) repeat the above two steps

• for joint modeling method and FPCA-based method: (1) estimate the distribu-

tion of capacity at cycle t through the simple kriging predictor (Equation (4.22))

and (2) simulate capacity based on the distribution in (1)

3. Evaluate cycle to failure distribution using the result of Step 2

• for mixed-effect regression model: calculate cycle to failure using the simulated

parameters in Step 2 and given failure threshold

• for joint modeling method and FPCA-based method: calculate the probability

of failure at cycle t based on the estimated distribution in Step 2

Figure 5.12 presents the capacity prediction accuracy comparison of proposed methods.

Predictions based on mixed-effect regression and joint modeling method are close to each

other because that when the input of data is balanced, these two methods are consistent.

Because the joint modeling method can well deal with unbalanced data, measurements of

all batteries are used in the joint modeling method while only the first 549 measurements

are used in the mixed-effect model. Therefore, in the late stage, the confidence interval of

the joint modeling method is smaller than that of the mixed-effect model. Compared with

the above two methods, FPCA-based and mean-covariance decomposition (MCD) methods

model the mean and covariance separately, which leads to accurate mean prediction with

large variations.
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Figure 5.12: Comparison of capacity prediction accuracy

Table 5.1: Mean and standard deviation of cycle to failure based on various prognostics

models

Mixed-effect model Joint modeling method FPCA-based method MCD-based method

Mean 635.2 634.6 635 637 .0

Standard deviation 11.2 10.3 15.3 29.4

Cycles to failure distribution, estimated based on the capacity prediction, have the same

characteristics (see Figure 5.13). The mean and standard deviation of cycle to failure esti-

mated based on mixed-effect are shown in Table 5.1. The observed average cycle to failure
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Figure 5.13: Comparison of cycle to failure distribution

over the four batteries is 623 less than the estimated cycle to failure because battery CS2 36

fails at the cycle of 549 and other batteries fails at the cycle over 620. When more samples

of batteries are available, the estimated mean and observed mean are closed to each other.
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6. CONCLUSION AND FUTURE WORK

The fundamental problem that this research addresses is the prognostics modeling with

repeated measurement data of multiple units. In the previous chapters, statement of prob-

lem, literature review, proposed methods, and battery capacity prognostics application are

discussed. This final chapter summarized the main contributions and discuss the future

research work.

6.1 Summary

Chapter 1 introduces the major research problems. As the key process of prognostics

and health management (PHM) and predictive maintenance (PdM), prognostics aims to

predict the system’s remaining useful lifetime (RUL). There are four major uncertainties in

prognostics modeling: input, model, measurement, and operational uncertainties. Repeated

measurement studies are designed to characterize the input uncertainties. Challenges along

with the repeated measurement data require advanced modeling techniques so that model

errors can be reduced. Four research objectives are proposed, including 1) to quantify

multiple sources of variability, 2) to deal with complex data structure, 3) to explore general

spatio-temporal model for repeated measurement data, and 4) to develop robust algorithms

for prognostics models.

Chapter 2 summarizes the existing prognostics approaches and their application in

prognostics with repeated measurement data. Based on the literature review, research gaps

are identified. Prognostics approaches are classified as data-driven, physics-based, and hy-

brid approaches, according to the usage of physical knowledge. There are limited works

in prognostics modeling with repeated measurement. This research focuses on developing

adequate models in this area.

101



Chapter 3 illustrates the general mixed-effect model to tackle the challenges along with

repeated measurement data. This research first uses the general linear mixed-effect model

to quantify the multiple sources of variability. The incorporation of physical knowledge of

the degradation mechanism is done through covariates identification and model selection.

Chapter 4 presents the joint modeling method based prognostics. Due to the drawback

of general linear mixed-effect models in unbalanced data, joint modeling method (JMM)-

based prognostics assumes the measurements of multiple units over time as a multivariate

Gaussian distribution. Trigonometric function is used for the unconstrained parameteration

of the correlation matrix.

Chapter 5 introduces two other prognostics modeling methods, functional principal

component analysis (FPCA) and spatio-temporal modeling-based prognostics. FPCA is

used to solve the computation issue of aforementioned methods due to the high dimension-

ality of repeated measurement data. Based on the above methods, a general spatio-temporal

model is proposed to quantify unit-specific variation, temporal variation, and unit-temporal

variation. Moreover, the performance of proposed models is evaluated in terms of predic-

tion accuracy, adaptability, and computational complexity.

In Chapters 3 to 5, the application of proposed methods in battery capacity prognos-

tics is used for the validation of the proposed methods. The proposed methods are used to

investigate battery capacity fade over repetitive cycles by considering both within-battery

and between-battery variations. Physics-based covariates are integrated with functional

forms for modeling the capacity fade. A systematic approach based on covariate identifica-

tion, model selection, and a strategy for prognostics data selection is presented for all these

proposed methods. The results of preliminary work show that the proposed methods can

improve the prediction accuracy and can also be used to understand the battery capacity

degradation mechanism.
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6.2 Future work

The discussions at Chapters 2, 3, 4, and 5 have addressed the future research directions.

This section summarizes those and suggests other potential opportunities.

The major goal of prognostics modeling is to predict the remaining useful life. In the

case of repeated measurements of multiple units, modeling multiple sources of uncertain-

ties in prognostics becomes a challenge with the complex data structures, such as large

scale data sets, unbalanced data, heterogeneous measurements, etc. As discussed in pre-

vious chapters, it would be necessary to develop robust methods that can perform well in

various cases. On this subject, future work could be done in the following directions.

1. Hybrid methods of physics/model-based and data-driven methods are widely used

for prognostics due to their strength inheriting from both data-driven and physics-based

models, which can help to improve predict accuracy and model interpretation. However,

existing hybrid methods used in repeated measurement data, mainly regarding the develop-

ment of data-driven techniques and physical understanding are relatively less incorporated.

In the future, fusion of physics-based models and cutting-edge data-driven methods, such

as artificial intelligence (AI) method, became one of important topics in prognostics such

as the integration material computational models and deep learning methods.

2. The general spatio-temporal model can effectively model and effectively quantify

the multiple sources of variability, especially when the “spatial” dependency exists. De-

velopment of nonstationary convariance functions and their parameter estimations are top

challenges for highly dynamic degradation process. The generalization of spatio-temporal

models using repeated multiple units can be used in engineering systems prognostics when

sensing signals of correlated components are available. Moreover, non-Gaussian models

and processes are encountered in many natural and applied science fields. Constructing

non-Gaussian process with given correlation structures will be an interesting research area.

3. Online monitoring and prognostics is an emerging trend. Prognostics modeling

with online data is expected to be adaptive. When recovery or maintenance actions are

taken, the system degradation state estimation scheme based on the health state of sub-
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systems/components should be updated automatically. Moreover, storage and analysis of

large-scale degradation data are also challenges. The concept of moving-window can be

promoted to deal with online prognostic modeling. Sensing data can be available in forms

of complex data structures, such as few data and unbalanced or missing data. Bayesian

inference attracts growing attentions. For the case of few data or no data available, physics-

based models can provide prior knowledge for the degradation process. However, how to

validate the expertise judgment remains a challenge. The major challenge in prognostics

modeling over unbalanced/missing data is to incorporate all information of multiple sub-

jects.
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